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Abstract 

In this document we report on the status of the Nuclear Energy Advanced Modeling and 

Simulation (NEAMS) Enabling Computational Technologies (ECT) effort.  In particular, we 

provide the context for ECT In the broader NEAMS program and describe the three pillars of the 

ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational 

facility (computers, storage, etc) needs.   We report on our FY09 deliverables to determine the 

needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out 

the general plan for software quality assurance to meet the requirements of DOE and the DOE 

Advanced Fuel Cycle Initiative (AFCI).  We conclude with a brief description of our interactions 

with the Idaho National Laboratory computer center to determine what is needed to expand 

their role as a NEAMS user facility.   

Introduction 

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign was instituted to 

provide essential computational simulation capabilities enabling the Department of Energy to 

partner with designers and engineers from the nuclear energy industry for the cost-effective, 

efficient, and safe development of the next generation of nuclear energy production. Nuclear 

energy is considered a key ingredient in any effective strategy to ensure the security and 

independence of our future energy supplies. 

In the face of an aging nuclear power infrastructure now relying on an older, unsustainable 

model of energy production, with spent fuel piling up in repositories, the Department of Energy 

is embarking on an end-to-end redesign of the entire fuel cycle, from the acquisition of fissile 

material, through its processing into nuclear fuel, through the generation of power, 

reprocessing and recycling of used fuel, and finally through the final disposition of spent nuclear 

materials. 

This is an enormous undertaking, a science and engineering task on a scale that the Department 

of Energy (or its predecessors) has embarked upon only a few times, most notably in the 

Manhattan Project.  There is tremendous work to be done in the design of new methods and 

facilities; included in this work is a great amount of fundamental science. 

The scientific community has come to recognize over the past fifteen years that science at this 

scale can only be feasible through heavy reliance on the use of computational simulation as a 

predictive science.  The experiments necessary to prove or refine the fundamental theories are 

too expensive, or on too grand a scale, or requiring such extraordinary instrumentation to work 

at an atomistic scale, that very few of the necessary experiments can be conducted. 



Mitigating this situation, however, has been the rise of computational science capability, 

reaching the point that computational simulation is now widely considered a peer to theory 

and experiment in a new triumvirate of science.  Simulation has long been used to validate 

experiment and verify theory; now it is used to predict fundamental physics, to inform the 

design of experiment, and to guide the overall end-to-end process of scientific discovery, 

design, and engineering development. 

For this state of affairs, the Department of Energy can take a fair share of credit.  Beginning in 

the mid 1990s with the Accelerated Strategic Computing Initiative (ASCI), which matured into 

the Advanced Simulation and Computing (ASC) Program, and progressing into the early 2000s 

with the Scientific Discovery through the Advanced Computing (SciDAC) initiative, the DOE has 

in many ways led the way.  ASCI, and later ASC, paved the way by harnessing National 

Laboratories, universities, and industry into a coherent team that produced unprecedented 

massively parallel supercomputer architectures, computing and development environments to 

employ these machines, and the detailed multiphysics codes operating at unheard of 

resolutions to create an accurate, verifiable, and trustworthy assessment of the state of the 

nation’s nuclear weapons arsenal.  SciDAC followed in the ASC footsteps by mobilizing multi-

institutional teams to apply this same style of computational capability to a broad range of 

important scientific problems in a wide range of topics, from fundamental physics to 

climatology, biology, planetary science, and astrophysics, among others. 

In just such a spirit was NEAMS founded.  Recognizing that the future nuclear energy industry 

would have to overcome scientific obstacles and challenges on a scale similar to those faced a 

decade earlier by ASCI, the intention is that NEAMS become the source of the computational 

simulation capability that nuclear scientists and designers will require to overhaul the entire 

nuclear power production process from start to finish. 

Overview of NEAMS and ECT’s role 

NEAMS is intended to deliver to its ultimate customers a comprehensive, integrated capability 

for performing large-scale multiphysics simulation to be used as a crucial tool in the design, 

engineering, licensing, and operation of the next-generation nuclear power system, including 

the entire fuel cycle from processing to utilization to separation and reprocessing, reuse, and 

ultimately, permanent storage or disposal. The ultimate users will be nuclear power plant and 

fuel cycle designers, engineers, and regulators. 

For NEAMS to succeed, it must succeed in each of several distinct but highly interdependent 

functionalities, as delineated in Figure 1.  Certain pieces of the puzzle are relatively obvious; for 

example, no high-performance simulations can be performed without access to large-scale 

computing platforms, so one function of NEAMS is to ensure that such facilities are available 



and that the codes and computer science tools and environments are developed and deployed 

to make use of these tools.   

Looking at the overall structure from the lowest level, NEAMS must ensure that modeling 

capabilities at the atomistic level exist, as this fundamental understanding of the basic physics 

enables the simulation codes to be created with the appropriate materi

the codes directly.  To accomplish this, an “upscaling” function must be developed to transfer 

what is learned about the sub-grid behavior of the materials to the macroscale modeling.  

These capabilities are used by the integrated s

the heart of NEAMS.  There are four such teams, specializing respectively in Reactors, 

Waste Forms, and Safeguards & Separations. Several critical functionalities must be developed 
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to be developed, tested, and, ultimately, employed 

Similarly, the code teams require the most 
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simulations are being run, tools enabling scientists to analyze and interpret the results are 
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necessary; hence an effort in visualization and analysis for large data sets is essential.  Finally, 

NEAMS must develop a plan for deployment: a means of transferring the technology they 

create to the ultimate end users. 

To accomplish these tasks, NEAMS is organized into five program elements. The most 

important, the “business end” of NEAMS, is made up of four multi-institutional Integrated 

Performance and Safety Code (IPSC) teams:    

1. Reactors: the reactor core IPSC code team is striving to produce three-dimensional 

simulations of the reactor core for the design of next generation reactors and to 

understand their behavior in various accident scenarios and thereby ensure their safety. 

   

2. Fuels:  the fuels IPSC team aims to develop a three dimensional predictive tool for the 

simulation of pins and assemblies applicable to existing and future design nuclear 

reactors in both normal and abnormal operating conditions. 

 

3. Safeguards and Separations: the objective of the Safeguards and Separations IPSC is to 

develop facility-level, first-principles, fully integrated simulation of separation and 

safeguard technologies that enable a sustainable next-generation fuel cycle with 

minimal processing, waste generation, and potential for material diversion. 

 

4. Waste Forms and Systems: the objective of the Waste Forms IPSC is to provide an 

integrated suite of computational capabilities for simulating the long-term performance 

of waste forms in the engineered environment of a waste storage or disposal repository. 

While each of these code teams faces specialized and unique problems to surmount, they share 

many common needs.  As a result, four “cross-cutting elements” were established to provide 

services, tools, and expertise that would be needed by all of the IPSC code teams.  The four 

cross-cutting program elements are: 

1. Fundamental Models and Methods (FMM):  Among the challenges common to several 

of the IPSC teams is the need to fully understand  and model physical behavior of 

materials at smaller length scales; this program element is intended to provide tools and 

techniques to understand how materials behave and interact at multiple scales – 

enabling the so-called  Atomistic-to-Continuum (AtC) multi-scale simulation by providing 

the IPSC teams with understanding and improved properties to be used in their  model.  

This element also identifies and drives small scale experimentation necessary to 

generate the data needed for physical and engineering models. 

 



2. Verification & Validation and Uncertainty Quantification (VU):  Any  computational 

simulation code, to be of any value, must be verified and validated as defined above. 

This program element is intended to provide tools that allow computer scientists, 

physicists, and engineers to measure and evaluate whether the code satisfies these two 

criteria. Moreover, in any computational model, there are parameters and variables 

whose values are, in varying degree, uncertain. Uncertainty quantification is designed to 

understand the possible effects on the final calculation due to these uncertainties.  This 

program element is also established to develop and implement methodologies to 

understand the uncertainties and ensure that their effects fall within the design margins 

of the codes.  As a consequence of the nature of this activity, this program element will 

function as NEAMS’ principal interface to the Nuclear Regulatory Commission. 

 

3. Capability Transfer (CT):  The success of NEAMS is entirely dependent on the degree to 

which the capabilities NEAMS creates are adopted and employed by the nuclear energy 

industry and licensing bodies. It is crucial, therefore that NEAMS include an element 

tasked to make the NEAMS product attractive, available, and readily useful to the 

scientists, designers, engineers, operators, and regulators of the nation’s nuclear 

industry.  The program element accordingly must develop methods for accomplishing 

this transfer, including strategies for turning scientific and research codes into 

engineering and production tools to be used by industry, and to work toward 

“hardening” and “productizing” the high performance computing codes and systems, 

making them easily accessed and improving their "usability." 

 

4. Enabling Computational Technology (ECT): One of the most important lessons of the 

ASCI and SciDAC experiences is that there is great commonality in the fundamental 

technological needs seen by high-performance code teams, independent of the specific 

scientific questions the teams are attempting to answer. All code teams need to have 

code development and programming environments that make tractable the writing, 

testing, debugging, and modifying of massive codes that easily run to hundreds of 

thousands of code lines, are written by teams of scores of programmers implementing 

the ideas of tens of scientists, over many months or years. An essential requirement of 

NEAMS is to ensure that technologies enabling code work at this scale are available to 

each of the IPSC teams.   

 

For NEAMS to be successful, each of these cross-cutting program elements must succeed, in 

order that the IPSC teams can create the simulation capability incorporating the fundamental, 

extraordinary physics necessary to provide the designers and engineers in the nuclear industry 



with the confidence to employ NEAMS technology in the actual design of a new, reliable, 

efficient, and safe nuclear energy generating capability. 

How (and what) ECT will deliver  

A credible scientific computational simulation capability must have certain characteristics.  

First, it must be science based; that is, it must be based, to every extent possible, on first 

principals of physics rather than relying on heuristics, anecdotal evidence, or extrapolation from 

a small number of limited experiences. It must feature high dimensionality, including at least 

two and more often all three spatial dimensions, as well as the dimension of time.  It must be 

high resolution, implying that the codes, and systems on which they run, must be capable of 

handling simulations involving many millions or even many billions of independent variables, as 

many as are necessary to resolve the problem with adequate modeling of space and time. The 

codes must be part of integrated systems, implying that codes modeling all components of the 

system (e.g., a reactor, a waste form processing stream, a fuel cycle) must be integrated 

together, sharing file formats (or having full-function converters), I/O processes, etc., so that all 

components can work together, in sequence or in parallel, throughout the end-to-end modeling 

process.  An essential characteristic is that such codes must include the means for appropriate 

verification, validation and uncertainty quantification, necessary to ensure that the models give 

reliable and scientifically correct answers. It is expected that these codes will run on some of 

the world’s most powerful computing platforms and that they will use the best programming 

practices and sophisticated tools for displaying and analyzing the results. 

  
It is important to observe that ECT is charged with ensuring that the IPSC teams have access to 

the tools and techniques that enable the creation of the high-performance codes described in 

the preceding paragraph.  This does not imply that ECT will be primarily in the business of 

creating these tools; rather, ECT will identify tools for a given functionality needed by the code 

teams (and there will likely be multiple tools for a given functionality), determine what is 

necessary to make that tool available to the code teams, and provide that capability.  For the 

most part, this will consist of identifying one or several software tools needed for the 

functionality (e.g., a debugger, a memory profiler, or a visualization suite), and providing a 

central location where the code teams can acquire the source and/or binaries for the tool, 

together with any licensing or registration requirements.  ECT’s primary mode of functioning 

will be in the identification and propagation of appropriate tools.  However, there may be areas 

in which a technological gap must be bridged; where the necessary tools simply do not yet exist 

or must be customized to meet the particular needs of the NEAMs program.  In these cases, 

ECT may use its discretionary funds to underwrite, in part or in total, the development of the 

needed tools by one or more of the NEAMS partners. 



Scope of ECT 

The ECT program element is built around three fundamental pillars: a) codes, libraries, and 

tools, b) software quality assurance (SQA), and c) computing platforms, cycles, and data 

management.  The goal of ECT is to provide the code teams with sufficient resources in each 

area to facilitate the construction and use of effective simulation codes and analysis tools. 

Pillar1:   Libraries and Tools:  

Roughly speaking, the codes, libraries, and tools that ECT must provide fall into four broad 

categories: 

• Programming tools: this category includes all the tools necessary to create a productive 

programming environment that enables physical scientists and computer scientists to 

work effectively together to build an accurate, reliable high-performance simulation 

capability.  This includes editors and editing environments, such as emacs; version 

control systems (e.g., CVS) that enable multiple team members to simultaneously edit 

the same code routines, controlling access and maintaining a fully recoverable historical 

succession of code versions; advanced compilers and linkers, including particularly tools 

that provide for advanced interoperability of code components even when they are 

written in different languages (mostly Fortran, C, C++, Python, Java, etc.)  and on 

different architectures; and debugging, code profiling, and  memory analysis tools (e.g., 

TotalView, Vampir, and Insure++, to name one of each). 

 

• Model setup: In this category are found the tools required to create a computational 

simulation problem from a mathematical or physical description of the real-world 

problem being simulated.  This area includes CAD (computer-aided design) routines for 

mathematically describing the geometry of a problem,  mesh generators , which replace 

the mathematical or geometrical description with a computational grid upon which the 

continuum description of the problem is replaced with a discrete set of gridpoints (or 

functions) upon which the calculation will proceed; discretizers that use the geometric 

information from the mesh generator and the mathematical formulation of the problem 

to create one or many systems of equations (linear or nonlinear) that must be solved to 

find a solution. Included in this category are the adaptive mesh refinement (AMR) tools 

that enable the simulation to calculate at extremely detailed resolution over relatively 

small areas where a great deal of complicated physics occurs (e.g., in the vicinity of a 

propagating crack) while using a coarser resolution over the majority of the 

computational domain, where the physics remains much simpler. 

   

• Solvers and time-steppers: It is commonly the case that at the heart of the simulation 

lies a large linear system of equations that must be solved at each time step.  Most 



often this takes the form of a linear system of equations, that is, a matrix equation.  

Modern simulation codes frequently must solve linear systems with millions of 

equations and millions of variables, at each time step (of which there may be millions).  

In some problems the systems of equations are non-linear, greatly complicating the 

finding of a solution. Indeed, these problems are Increasingly complex and require more 

accuracy as available tools mature.  As a result, sophisticated  modeling has come to 

require highly accurate and efficient non-linear solvers.  The use of optimization and 

minimizations as solution techniques is growing in popularity as well, generating an 

increasing need for effective tools for those functionalities. 

 

• Results analysis: Upon completion of the simulation (and increasingly often periodically 

during the simulation) it is essential that the scientist have at his or her fingertips tools 

to make sense of the mass of data the simulation creates.  This category includes 

families of statistical analysis codes, applying statistics to the data generated in the 

simulation and used to deduce important relationships among the variables, the ability 

to compute and examine derived data values from existing data (e.g.,  derivative 

information), visualization tools that enable the scientist to “browse” through the 

results, which are often files of such enormity that they cannot be comprehended at all 

in their initial form as raw streams of numbers. 

The results of our interactions with the other program elements in NEAMS to determine their 

needs in tools and libraries will be described in more detail in the section entitled “Tools and 

Libraries for the IPSC Teams”. 

 

Pillar 2:  Software Quality Assurance (SQA): 

 Software Quality Assurance forms the second pillar of ECT, and is a critical component of any 

modern software architecture.  In this context, SQA consists of providing an overarching 

philosophy about the construction, debugging, and maintenance of software, providing the 

code teams with sufficient indoctrination in the overarching philosophy that they want to 

employ best SQA practices, and providing the code teams with access to SQA tools enabling 

them to easily write codes that are compliant with those practices.  

 

The NEAMS AFCI Quality Assurance Program Document (QAPD) has chosen a graded approach 

for quality.  There are three quality rigor levels. Quality Rigor Level 3 (QRL3) is for routine R&D, 

feasibility studies, conceptual designs, exploratory tradeoffs and conceptual modeling. Quality 

Level Rigor 2 (QRL2) is for technical analysis used to inform policy reporting to congress or 

stakeholders, analysis for national environmental policy, and critical or controversial decisions. 

Quality Rigor Level 1 (QRL1) is for codes involved with facility safety, NRC licensing, or 



benchmarking of a methodology that has potential for NRC approval.  Most of the development 

done in the NEAMS program falls into QRL3 for research and development codes. 

 

The recommended SQA approach for NEAMS is based on experience with ASC research 

simulation codes. Both programs have the following key characteristics:  

• A research and development environment. 

• Multi-physics simulation codes. 

• Staff consisting of Physicists, Material Scientists, and Computer Scientists. 

• Languages used are commonly C, C++, Fortran, and Python. 

• Platforms are parallel clusters and High Performance Computing (HPC). 

A characteristic of R&D software is that, following the scientific approach of hypothesis � 

experiment � observation � conclusion, it is iterative in nature and involves trial and error. 

The software requirements (i.e., desired physics features) require the ability to experiment with 

the code to achieve an optimum design and implementation, both from a numerical precision 

and performance perspective. Knowledge gained experimenting with the design often changes 

the design approach to meet the requirements. Often a researcher is writing code to 

implement a design that has never before been done.  Thus the need to balance the discipline 

of sound software quality engineering practices with the agility needed to develop a research 

code can become a major tension within the NEAMS program. 

 

Similar challenges were faced by the DOE Advanced Simulation and Computing (ASC, formerly 

ASCI) program.  In order to meet the requirements of the AFCI QAPD, the SQA approach 

proposed in the section entitled “Software Quality Assurance for NEAMS” describes and 

recommends nine key concepts for NEAMS.  These concepts incorporate lessons learned and 

best practices for ASC scientific research codes focusing on “what worked” and minimizing 

“what did not work” in achieving the goal of balancing agility with software engineering 

discipline.  In addition, we will highlight ASC best practices, industry best practices, and 

software productivity tools that have proven useful.  Finally, in this section, we describe the 

results of our preliminary discussions with the IPSC teams regarding their current use of SQA 

tools and their needs in this area. 

Pillar 3:  Platforms, computing cycles, and data management:  

A key element of the enabling technologies program element is the deployment of the 

necessary compute cycles and storage facilities for high performance computing simulations in 

each of the other program elements.  This pillar comprises two components.  First, the NEAMS 

program must have a clear understanding of the requirements of the IPSCs in this area.  For 

example, what type of simulations are being performed, what are the type of facilities 



necessary to complete these simulations, how much storage is needed for the massive amounts 

of data typically associated with large-scale three-dimensional simulations.  Second, the NEAMS 

program will require dedicated compute resources as the IPSCs are developed and realistic 

simulations are performed that model the physics of interest to nuclear energy engineers and 

designers.  Thus the program cannot rely on obtaining its cycles from other programs such as 

the DOE’s INCITE program and must develop its own user facility.   

 

In the section entitled “Computing Platforms and Cycles” we describe the planned ECT efforts 

to develop a more complete picture of these requirements.  We also describe the computer 

facilities that are currently installed at the Idaho National Laboratory.  It is desired that these 

resources become more broadly accessible to the NEAMS community as a User Facility, but 

additional investments are needed to make this happen and the highest priority items are 

identified.  Finally, we describe the results our preliminary survey of these teams as to their 

anticipated requirements.  This survey was informal because many of the teams were in the 

midst of their planning phases and were not yet ready to provide detailed information.  In the 

section 

Using ECT to Increase the Efficiency of the NEAMS Program 

One of the reasons that ECT is included in the NEAMS plan is to foster efficiencies among the 

code teams.  The ASCI and SciDAC experiences have demonstrated the value of having 

commonly used tools available to multiple teams.  While this is not a “one-size-fits-all” 

prescription of what teams must employ, it is evident that providing sophisticated tools and 

capabilities tends to result in the use of those tools.  This in turn results in several tangible 

benefits: 

a) Overall, there is a reduction in the duplication of effort across the IPSC teams.  This 

results because teams will not have to spend the time and effort identifying 

commercial software or publically available shareware that meets their needs; the 

software packages have been identified and made available to them.   

b) Once a team has identified software, acquisition and deployment is often a labor-

intensive and time-consuming process.  Here again, having a central repository with 

pre-constructed “build” and installation scripts available makes the process of acquiring 

and installing software packages much simpler and faster. 

c) All of the code teams face certain common and significant challenges, such as problem 

set-up, meshing, data analysis, SQA, visualization, and the like.  While some of these 

issues can be addressed by commercial software, as in a), many of these problems are 

sufficiently complex that they involve fundamental research themselves.  In these 

cases, ECT can foster and, budget permitting, assist in the development of these tools, 

making the resulting product available across the NEAMS community.  This leverages 



the research dollars spent in one part of the NEAMS community for the benefit of all, 

and eliminates a considerable amount of duplication of research effort that would 

otherwise be necessary. 

d) Having ECT locating these support software tools (or causing them to come into 

existence), reduces the distraction of the NEAMS scientists, so that instead of spending 

their precious (and expensive) research time solving these problems they are free to 

pursue the fundamental NEAMS research. 

e) One of the important benefits of ECT is that it creates a “clearing house” of ECT 

information  

o by building a team intimately familiar with NEAMS and the ongoing related DOE 

efforts (for example, ASC and SciDAC), and hence able to make technology from 

these other programs available to the NEAMS scientists.    

o ECT plans to deploy a web portal through which NEAMS scientists can access 

the tools and information to fill their ECT needs. 

o ECT staff will work directly with IPSC teams to develop customized solutions 

when pre-built solutions are not readily available.  

ECT Milestones 

The ECT program element has defined a set of milestones that will be used to measure its 

effectiveness at serving the NEAMS community.  Milestones have been defined for the ends of 

Year 1 (FY09), Year 3 (FY11), and Year 5 (FY13) of the program.  Naturally, the milestones will be 

revisited as part of the planning cycle each year to ensure that they remain relevant and the 

best measures of success of the element.  The Milestones originally established are: 

� Year 1 (FY09) 

• Gather requirements from IPSCs and set priorities. 

• Develop a SQAP (Software Quality Assurance Plan) based on the DOE Office of 

Nuclear Energy’s AFCI guidelines and appropriate DOE regulations and 

requirements. 

• For each IPSC, understand the computing requirements and computing. resources 

available to the code teams. 

 

� Year 3 (FY11) 

• Deploy ECT technologies available from related programs (SciDAC/ASC) 

• Develop NEAMS-related ECT as needed. 

• Facilitate SQAP deployment for the IPSCs. 

• Deploy computational resources at Idaho National Laboratory. 

• Provide advanced tools for software development processes. 

 



� Year 5 (FY13) 

• Incorporate advanced methods for complex geometry and multi-physics 

applications. 

• Development of algorithms to improve usability & data representation/ 

understanding. 

Summary FY09 Activities 

Although NEAMS planning has been ongoing for a considerable period, funding for many of the 

program elements, including ECT, did not become available until April 2009.  As a result, the 

FY09 activities were limited to the last six months of the fiscal year.  In those six months, the 

ECT team worked to meet the FY09 milestones through the following activities: 

• ECT team members attended meetings or interacted regularly with the other NEAMS 

program elements, including all of the IPSC teams, Fundamental Models and Methods, and 

Capability Transfer. 

o Because the Fuels and Reactors elements were pre-existing efforts, the ECT 

requirements of those efforts were readily describable, and the ECT team spent a 

fair effort cataloging and understanding those needs, as well as beginning to think 

about possible solutions. 

o Because the Waste Forms and Safeguards & Separations elements were new start-

ups, their ECT needs are much less clearly developed.  For these efforts, ECT team 

members are tracking the growth and organization of the element as they coalesce 

and put together their plans.  As these plans materialize, ECT is in contact with the 

team IPSC leaders to capture the ECT needs as they arrive. 

• ECT held discussions on SQA with several of the IPSC teams, and instituted dialog with SQA 

experts at the laboratories where several of the IPSC efforts are centered.  In addition, ECT 

engaged SQA experts from Lawrence Livermore National Laboratory, with considerable 

experience with the growth and development of SQA in ASCI, who developed an initial draft 

SQAP.  This document is based on software quality requirements imposed on NEAMS by 

DOE and the AFCI, as well as an understanding of the relevant DOE regulations and 

requirements. 

•  ECT initiated discussions with the Idaho National Laboratory Computer Center and 

management of INL to determine what is required to position that center to serve as a 

NEAMS User Facility that will provide supercomputer cycles to the NEAMS community on an 

as-needed basis.  



Pillar 1: Tools and Libraries for the IPSC Teams  

What follows is a detailed description of how the ECT element perceives its charter for each of 

the IPSC teams.  For each IPSC, we describe: 

1. The IPSC Scope & Vision.  We briefly describe the purpose of the IPSC effort and how it 

fits into the “big picture” of NEAMS.  We describe the vision of how the fully-functioning 

code or code suite serves the needs of the community. 

 

2. Required Technologies. We list and describe the key technologies that will be required 

to achieve the vision.  

 

3. Current technological base. Here we list and describe the technologies, methods, and 

tools currently used by the IPSC team to perform the key tasks in the topic area.  

 

4. Computational Technology Gaps. We identify the gaps between the current enabling 

computational technologies in use by the IPSC and the technologies described above as 

being essential to achieve the full functionality of the IPSC.  

 

5. Candidate solutions.  In this section we lay out possible plans for acquiring, developing, 

or inventing enabling computational technologies, specifically tools and libraries, to 

close the gaps identified in item 4.  Where possible, we identify and delineate 

a. Solutions crafted by acquiring, assembling, and making available existing 

technologies. 

b. Solutions that require the development and/or invention of new technologies.  

For solutions in this category, we show a possible plan for developing the 

required new technology. 

c. Solutions employing some combination of existing technologies and new 

technologies, along with a plan for assembling and creating the necessary 

components. 

 

Not surprisingly, there are significant areas of overlap where the needs of the different IPSC 

teams are similar, if not identical. Hence, we will follow the discussions of the capabilities and 

needs of the individual IPSC teams with a section on “Cross-Cutting” technologies, describing 

these areas of commonality, the state-of-the-art currently available to the teams, the 

technological gaps, and the ECT plan for closing the technological gaps in the cross-cut 



technologies.   Discussion of the SQA practices and needs of the IPSC teams along with the 

compute needs are found in the sections that follow. 

ECT for the Reactors IPSC  

Overall Reactor Core IPSC Goal  

The reactor core IPSC code team is 

striving to produce three-dimensional 

simulations of the reactor core for the 

design of next generation sodium cooled 

fast reactors and to understand their 

behavior in various accident scenarios and 

thereby ensure their safety.  The primary 

focus is on the development of multi-

physics simulation tools that couple 

thermal hydraulics, neutronics and structural mechanics processes into an integrated 

simulation tool.  The developed tools should support a wide range of modeling fidelity ranging 

from very high fidelity (“truth”) calculations to lower fidelity simulations appropriate for use in 

design calculations.   The high fidelity calculations will likely require capability level HPC 

resources to run with the corresponding requirements for compute cycles, data storage, and 

networking needs.  The lower fidelity runs will likely run on small clusters or desktop machines.  

The team is currently focused on solving problems identified by the reactor design group at ANL 

including mixing and pressure drop in the fuel rod bundles and thermal mixing in the upper 

plenum.  At the same time, they are working to develop their next-generation simulation 

framework called SHARP which supports complex geometries, high-fidelity three-dimensional 

simulations that currently couple thermal hydraulics using Nek5000 and neutronics using UNIC, 

high performance computing, and advanced visualization of resulting data. 

 

The primary objective of the SHARP framework is to provide accurate and flexible analysis tools 

to nuclear reactor designers by simulating multiphysics phenomena happening in complex 

reactor geometries. Ideally, the coupling among different physics modules (such as neutronics, 

thermal-hydraulics, and structural mechanics) needs to be tight to preserve the accuracy 

achieved in each module. However, fast reactor cores in steady state mode represent a special 

case where weak coupling between neutronics and thermal-hydraulics is usually adequate. The 

SHARP framework design allows for both options. Another requirement for the SHARP 

framework has been to implement various coupling algorithms that are parallel and scalable to 

large scale since nuclear reactor core simulations are among the most memory and 

computationally intensive, requiring the use of leadership-class petascale platforms. 

Figure 2 Conceptual diagram of a sodium-cooled fast 

reactor, illustrating the complexity of the systems that 

must be simulated. 



In the sections that follow we describe the SHARP framework and its needs along with the 

individual simulation components identified to date.  In all cases we briefly describe their 

primary focus and core capabilities, and discuss the current enabling technologies used along 

with the goals of the component and ECT gaps.  We briefly discuss the needs associated with an 

uncertainty quantification effort undertaken by this team along with a preliminary discussion of 

their software quality engineering needs and hardware requirements.  We conclude by 

summarizing the high priority requirements for the ECT program element. 

Reactor Core Simulation Components 

 

SHARP Framework 

Current capabilities: The SHARP framework balances simplicity of adding new physics modules 

and support for commonly needed functionality (e.g. parallel IO), on one side, with efficiency 

and minimization of dependencies between modules on the other.  Abstractly, the framework 

includes the following physics components: heat transfer, neutron transport, depletion, and 

fuel/structural materials. Additionally, there is a complementary collection of utility modules 

for cross section processing, material properties, mesh generation, visualization, solution 

transfer between meshes, load balancing, parallel I/O, and unit/integral testing. 

The SHARP framework design couples physics together and with other services through the 

spatial discretization or mesh.  A common mesh representation, accessed through a common 

Application Programming Interface (API) (defined by the ITAPS SciDAC project) is used to 

preserve flexibility in a number of key aspects, while also providing a common focal point for 

the coupling activities. The SHARP framework uses the MOAB implementation of the ITAPS 

mesh API which provides a mesh representation which is both highly memory- and cpu time-

efficient.  The design preserves as much flexibility as possible, by allowing both loose and tight 

coupling, on the same grid or different ones.   

The code system uses common services available through the Mesh API, including a data 

coupler to couple data from libPhys1 and libPhys2. The overall solution process and passing 

data between physics modules is coordinated by the coupled driver.  All modules are compiled 

into a single executable, which then runs as a single MPI process. The top-level execution flow 

is controlled by the SHARP driver, which successively calls the individual modules’ API functions.  

To date the reactor modeling team has successfully coupled two physics modules, Nek and 

UNIC, and is running small (32 processor) test problems on the Jazz cluster at ANL. 

The team explored the use of the CUBIT mesh generation toolkit from Sandia National Labs to 

support two models for neutronics and fluid flow computations.  The Advanced Breeder Test 

Reactor (ABTR) model consists of hexagon- shaped assemblies of various types (inner and outer 

fuel, control, reflector, and shield), each assembly consisting of a hexagonal lattice of pins 



inside a hexagonal duct wall. Because of the relatively straightforward layout of simple hex-

shaped primitives, a geometric model for this core was developed inside CUBIT (more complex 

geometric models would normally be developed in a CAD tool like Pro/Engineer). Generating 

this model with CUBIT was a very memory-intensive process, requiring almost all of the 4GB of 

RAM on a 64-bit workstation even without the use of graphics. Generating a mesh for this 

model required over 5GB of memory, even for a moderately-sized mesh of several million 

elements. Other problems encountered in this effort include: 

• Problems generating relatively coarse meshes for hexagonal-shaped annular surfaces, 

resulting in a great deal of interactive effort to tune the geometric model to avoid these 

problems. 

• The inability to mesh a collection of stacked hexagonal prism-shaped volumes, when the 

meshing schemes have been specified as e.g. sweeping surface “A” to “B” but surface 

“B” is meshed first. This forced the generation of the mesh for each reference assembly 

type (fuel, control, etc.), before the assembly was copied and moved in the hexagonal 

lattice of assemblies. This generation method was sufficient for this core only because of 

the separation of assemblies by a thin sodium region.  

 

After struggling with these problems, it was decided to use CUBIT only for surface mesh 

generation. A standalone tool was used to sweep this surface mesh into the third dimension. 

Visualization for the SHARP framework is currently performed using the VisIt tool from LLNL.  

Preliminary work shows this tool is successfully displays the large data sets generated by the 

coupled simulations performed here and that some aspects of the ITAPS mesh data model can 

be supported through VisIt reader plugins. 

ECT Gaps: The team requires advanced meshing capabilities that are custom tuned to the 

problems of interest to GNEP.  Both lower-memory and fast algorithms for geometry creation 

and mesh generation (such as move and copy) would be of use.  In addition, advanced coupling 

techniques that support higher order elements, different basis functions, and larger scale 

parallelism are a high priority.    While preliminary work has been undertaken to modify VisIt to 

support the ITAPS mesh data model; more work needs to be done to support this more fully; 

particularly in the area of supporting entity sets and tagged data. 

Thermal Hydraulics  

Current capabilities:  The thermal hydraulics component currently used in reactor core 

modeling is the Nek5000 software (http://nek5000.mcs.anl.gov/index.php/Main_Page).  The 

primary focus are very high fidelity simulations to achieve a detailed understanding of mixing 

associated with the wire wraps in the fuel bundles and mixing in the upper plenum.  Nek5000 is 

a computational fluid dynamics software package that uses body-conforming hexahedral 



elements and high-order spatial discretizations via spectral element technology.  The primary 

fluid regimes addressed with this software include incompressible and low Mach number 

(variable density) flows with LES and RANS turbulence models.  The Nek5000 team has invested 

considerable effort in producing a highly efficient code with state-of-the-art solvers and 

preconditioners (multigrid and scalable coarse grid solves), scalable communication kernels, 

low memory footprint, and scalable memory design.  The code scales to over 100,000 

processors on the IBM BG/L system.  The code currently uses the CUBIT software 

(http://cubit.sandia.gov) for mesh generation, MOAB for coupling to the neutronics 

component, and VisIt for visualization of very large data sets. 

 

ECT Gaps:  The vision for this software is to couple it to both neutronics and structural 

mechanics components (e.g. Diablo, LLNL).  To achieve this vision will require a mesh-to-mesh 

transfer capability between the fluid and mechanics codes.  In addition, the Nek5000 

component itself requires new mesh generation capabilities that provide high-order hexahedral 

meshes. 

 

Neutronics  

Current capabilities:  The reactor core team is developing a new state-of-the-art unstructured 

neutronics solver called UNIC with the ultimate goal of enabling significantly lower uncertainty 

margins in the analysis of newly proposed reactor designs.  UNIC is a three-dimensional 

deterministic neutron transport code that models the second-order form of the transport 

equations using finite element discretization techniques. To solve the transport problem, the 

Boltzmann equation can be modeled using several different techniques including both spherical 

harmonics (1, 2, and 3D) and discrete ordinates methods (2 and 3D).   Spherical harmonics 

expansions fit well with the diffusive nature of problems often encountered in reactor physics, 

especially when homogenization approaches are used; they are also hierarchical, making them 

ideal for multiresolution and adaptive mesh techniques. Discrete ordinates methods have the 

advantage that they are comparatively cheap in memory and can more accurately treat the 

detailed flux distributions for heterogeneous geometries.  The resulting algebraic systems are 

solved using the Portable, Extensible Toolkit for Scientific computing (PETSc) software 

(http://www.mcs.anl.gov/petsc) and typically over 80% of the total solution time is spent in the 

preconditioned conjugate gradient solvers.  The overall performance is determined largely by 

the choice of preconditioner, which must be guided by the physics of the problem. UNIC uses 

domain decomposition-based preconditioners (for example, additive Schwarz methods) for 

scalability. Mixed linear tetrahedral/hexahedral meshes are generated using the CUBIT 

software and are partitioned by using the MeTiS package, which attempts to minimize the 

communication while balancing the computational work load on each processor.  UNIC has 

been designed to scale seamlessly from desktop to very large numbers of processors (currently 



has been run to 80,000 processors of BG/L) which allows reactor analysts to choose the level of 

desired fidelity.   

 

ECT Gaps:  A number of advancements that involve enabling computational technologies are 

needed to improve the overall algorithmic performance of these solvers.  The highest priority is 

the development of more efficient preconditioners that leverage the sparsity pattern in the 

matrices to accelerate solution.  Candidate software solutions include the use of algebraic 

multigrid such as the solvers found in the hypre software, which can be downloaded from 

https://computation.llnl.gov/casc/linear_solvers/overview.html. However, due to the special 

form of the problems given here (namely that the first order form is not symmetric), hypre is 

not likely to work immediately and some development and customization is required.  In 

addition, the mesh generation software needs to be tuned for the neutronics problem as it is 

currently generating too many elements for this type of analysis.   The team would also like to 

explore alternate load balancing strategies such as those provided by the Zoltan software 

package (found at http://www.cs.sandia.gov/zoltan) and explore hybrid programming models 

(for better algorithmic convergence rates) and memory reducing algorithms for the matrix-

vector products.   

 

Fast Reactor Safety Analysis  

Current capabilities: The safety analysis simulations are focused on core disruption issues, 

sodium boiling and dry out, cladding failure, fuel failure, protected and unprotected loss of 

flow, and oxide fuel deformation, disruption and material relocation.  The current technology is 

based on the legacy code SAS4A which represents 100s of man years of effort.  During many 

accident scenario simulations, a large number of interrelated physical phenomena occur during 

a relatively short time. These phenomena include transient heat transfer and hydrodynamic 

events, coolant boiling and fuel and cladding melting and relocation.  Heat transfer in each pin 

is modeled with a two-dimensional (r/z) heat conduction equation. Single and two-phase 

coolant thermal-hydraulics are simulated with a unique, one-dimensional (axial) multiple-

bubble liquid metal boiling model. The transient fuel and cladding mechanical behavior model, 

integrated with fission product production, release, and transport models, provides prediction 

of fuel element dimensional changes and cladding failure. Fuel and cladding melting and 

subsequent relocation are described with multiple-component fluid dynamics models, with 

material motions driven by pressures from coolant vaporization, fission gas liberation, and fuel 

and cladding vaporization. Reactivity feedbacks from fuel heating (axial expansion and 

Doppler), coolant heating and boiling, and fuel and cladding relocation are tracked with first 

order perturbation theory. Reactivity effects from reactor structural temperature changes 

yielding radial core expansion are modeled. Changes in reactor power level are computed with 

point kinetics. Numerical models used in the code modules range from semi-implicit to explicit. 



The coupling of modules in time is semi-explicit within a multiple-level time step framework. It 

uses simple loop models for reactor coolant systems and balance of plant thermal hydraulics.  

 

Vision: The vision for the next generation accident scenario code is to focus on higher-order, 

higher-resolution tools which work together in a multi-physics, multi-scale framework.  Ideally 

high-fidelity neutronics codes will be used to model the details of the core region in three 

dimensions, the thermo-hydraulics will be modeled using advanced CFD and turbulence models 

in selected regions of the reactor along with three-dimensional structural mechanics in selected 

regions of the domain.  Lower fidelity codes will be used to model whole-core transient 

behavior and will be coupled to one- or two-dimensional models in the remaining reactor 

regions.   

 

ECT Gaps:  The ECT gaps that must be filled to make this vision a reality include advanced 

meshing capabilities and design tools that can handle the conflict between the fine scale 

features of the wire wrap and the coarser scale needs inside the fuel pin.  In addition, coupling 

tools are needed to join high and low fidelity models together with the flexibility to plug-and-

play different models together (note: this latter is more related to the framework being 

developed by the capability transfer program element).  Lower fidelity models need to leverage 

multi-core desktop compute platforms and the tools in general must port from the desktop to 

HPC systems such as the IBM BlueGene series. 

 

Uncertainty Quantification for Reactor Modeling 

Current capabilities:  The reactor core team is currently exploring the use of stochastic finite 

element techniques for uncertainty quantification with particular application to heat 

distribution in the nuclear reactor core.   The goal is to understand the normal functioning of 

the reactor and distance between normal operating conditions and the designed safety 

margins.  These studies result in very large systems with high dimensions with 100,000 to 

millions of parameters.  Such problems cannot be studied directly and so adjoint sensitivity 

analysis is being used here.  It is currently implemented for older codes, primarily neutronics 

systems and less so for thermo hydraulics and structural problems.  

 

ECT Gaps: This group would like to add derivative information at each point to reduce the 

number of sampling points used in the current Monte Carlo techniques.  To do this, the team 

would like tools that set up adjoints as automatically as possible through the use of automatic 

differentiation tools such as ADIFOR and ADIC (http://wiki.mcs.anl.gov/autodiff). 

Tools and Libraries Summary for the Reactor IPSC 

The highest priority items identified by the reactor core team for ECT are: 



• Advanced geometry creation and mesh generation (perhaps through modifications to 

CUBIT if it can be released 

• Mesh to mesh coupling (high order elements, different dimensions, different fidelities, 

different implementations of solvers)

• Visualization tools that support the reactor framework data model

• Advanced preconditioner technologies for neutronics modeling

 

ECT for the Fuels IPSC 

Overall Fuels IPSC Goal  

The Fuels IPSC team aims to develop a three dimensional predictive tool for the simu

pins and assemblies applicable to existing and future design nuclear reactors in both normal 

and abnormal operating conditions.  

certification of new nuclear fuels

required in the qualification of the proposed nuclear fuels. The new code

for life extension problems and safety margins of future advanced fuels, simulating fuel failure 

phenomena such as swelling and cladding. 

The Fuels IPSC will simulate the radical material

microstructural and chemical changes

undergoes both during manufacturing and irradiation. 

These physical phenomena are intrinsically 

coupling thermo-mechanics, neutronics, thermal 

hydraulics, and species transport

spanning many length scales (micron

time scales (minutes to days).  

The current industry standard code is FRAPCON, a 

complex 1.5-dimensional code that is non

hard to use, with physics capabilities that although 

comprehensive are also highly simplified, ma

specific and empirical. The Fuels code under development 

will replace FRAPCON and provide an HPC alternative for 

the analysis of different fuel cycle scenarios: chemical forms, metal alloys, ceramics (oxides, 

nitrides, carbides) and mechanical forms

will be science-based and validated. The team plans to 

initial limited version with near-term capabilities will be offered in

code will inform (b) a newer version with 

a prototype in 2012); and (c) an 

Advanced geometry creation and mesh generation (perhaps through modifications to 

CUBIT if it can be released as open source) 

Mesh to mesh coupling (high order elements, different dimensions, different fidelities, 

different implementations of solvers) 

lization tools that support the reactor framework data model 

Advanced preconditioner technologies for neutronics modeling 

he Fuels IPSC team aims to develop a three dimensional predictive tool for the simu

pins and assemblies applicable to existing and future design nuclear reactors in both normal 

and abnormal operating conditions.  This tool will be used for the design, analysis and 

nuclear fuels; and will result in a process that drastically reduces the time 

required in the qualification of the proposed nuclear fuels. The new code needs to 

for life extension problems and safety margins of future advanced fuels, simulating fuel failure 

d cladding.  

radical material and the 

microstructural and chemical changes that nuclear fuel 

both during manufacturing and irradiation. 

intrinsically multiphysics, 

mechanics, neutronics, thermal 

species transport, and multiscale, 

(microns to meters) and 

The current industry standard code is FRAPCON, a highly 

dimensional code that is non-scalable and 

hard to use, with physics capabilities that although 

comprehensive are also highly simplified, material 

specific and empirical. The Fuels code under development 

will replace FRAPCON and provide an HPC alternative for 

the analysis of different fuel cycle scenarios: chemical forms, metal alloys, ceramics (oxides, 

nitrides, carbides) and mechanical forms (pellets, sphere-pack, micro-pack). This new 

based and validated. The team plans to release the code in three stages: 

term capabilities will be offered in 2010; experience with this 

a newer version with intermediate capabilities to be delivered

 advanced-capabilities final release code will follow

Figure 3 Fuel packages to be 

simulated by the Fuels IPSC

Advanced geometry creation and mesh generation (perhaps through modifications to 

Mesh to mesh coupling (high order elements, different dimensions, different fidelities, 

he Fuels IPSC team aims to develop a three dimensional predictive tool for the simulation of 

pins and assemblies applicable to existing and future design nuclear reactors in both normal 

lysis and 

that drastically reduces the time 

needs to be validated 

for life extension problems and safety margins of future advanced fuels, simulating fuel failure 

the analysis of different fuel cycle scenarios: chemical forms, metal alloys, ceramics (oxides, 

pack). This new Fuels IPSC 

in three stages: (a) an 

experience with this 

capabilities to be delivered in 2015 (with 

code will follow in 2022. 

Fuel packages to be 

simulated by the Fuels IPSC 



As mentioned above the classes 

to describe material structural changes, transmutations, fission, 

macroscale to address long range transport (power, species), nuclear power generation, 

thermal mechanics.  For purposes of code design, 

coupled both at the micro/macro interface (

information to the thermal mechanics loop) and at the macro scale. 

approach was chosen for the design of the code: using independent multiphysics modules that 

interact through a simplified framework. 

Some of these modules will be leveraged from existing efforts funded by other programs (

ASC, SciDAC, Office of Science base program

developed as needed. For example, the team is working on 

transport and flow modules and plan

dimensional models ORIGEN, MATPRO, 

destruction and creation of over 2000 isotopes due to f

and provides elemental source terms for chemistry ChemApp and MATPRO modules. MATPRO 

is a library of fuel and cladding material properties as functions of temperature and irradiation. 

It is implemented as a library of functions 

experimental data. ChemApp is a

chemical equilibria and their associated energy balances.

Figure 4 Schematic of the major components in a

 of simulations targeted by this code are multiscale:  

material structural changes, transmutations, fission, and neutron transport, and 

to address long range transport (power, species), nuclear power generation, 

For purposes of code design, these different scales are treated 

coupled both at the micro/macro interface (e.g., material structural changes serve as 

thermal mechanics loop) and at the macro scale. Consequen

the design of the code: using independent multiphysics modules that 

a simplified framework.  

of these modules will be leveraged from existing efforts funded by other programs (

base program) and from legacy codes, while other

developed as needed. For example, the team is working on thermo-mechanical

and plans to reuse existing legacy codes such as the 

dimensional models ORIGEN, MATPRO, and ChemApp. ORIGEN is a scalar code that tracks the 

destruction and creation of over 2000 isotopes due to fuel irradiation and material activation 

and provides elemental source terms for chemistry ChemApp and MATPRO modules. MATPRO 

is a library of fuel and cladding material properties as functions of temperature and irradiation. 

f functions where the functional forms are calibrated to 

is a library for the calculation of multicomponent, multiphase 
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uel irradiation and material activation 
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is a library of fuel and cladding material properties as functions of temperature and irradiation. 

the functional forms are calibrated to 

library for the calculation of multicomponent, multiphase 

modular Fuels IPSC code  



The team is using NEWTRNX, a 3D deterministic code, as a placeholder while work on the 

neutronics package is in progress.  

The design plans call for the development of a “thin” framework to facilitate the coupling of the 

physics modules, providing abstractions for solver interfaces and “domain state” component. 

This framework will likely feed from existing interdisciplinary efforts in the SciDAC (Common 

Component Architecture) and ASC programs, and will incorporate aspects from established 

framework efforts such as ADVENTURE, SHARP and MOOSE. The evaluation of these 

frameworks and identification of components to be adopted is an important focus of the code 

team at this time. A brief description of the frameworks follows: 

- The ADVENTURE system is based on a hierarchical domain decomposition method (HDDM). 

This framework partitions the problem into non-overlapping subdomains, analyzes the 

subdomain problems (local problems) with direct solves and enforces the compatibility 

between subdomains (coarse problem) via an iterative solve. ADVENTURE assumes a finite 

element discretization and uses CAD model tools, TetMesh, Metis (for partitioning) and its 

own tools for I/O 

 

Figure 5 Flow diagram of the ADVENTURE framework 

- MOOSE is a framework for hosting tightly coupled multiphysics applications that provides a 

simple development interface accessible to engineers and increases application robustness. 

This framework assumes that the same underlying mesh is shared throughout the 

application while allowing for different time/spatial scales. It takes advantage of software 

libraries shared by the scientific community, such as the solver libraries Petsc and Trilinos, 

and the meshing tool libMesh. 

 

- SHARP was described in the prior Reactors IPSC section. 

 

 



Software requirements. 

Meshing is one of the more important issues to be addressed in the development of the Fuels 

code. Various physics modules use different types of meshes (e.g. tetrahedral versus 

hexahedral elements) and often require different levels of resolution. For example the 

structural mechanics and neutronics codes require different types of meshes of vastly different 

resolution: fine scale resolution for structural mechanics and flow, and a coarser mesh for 

neutronics (with many energy groups per mesh element).  

The multiscale nature of the simulations also introduces the need for numerical algorithms and 

time stepping strategies that allow for a proper coupling of the scales. In particular, the codes 

upscaling information from sub-grid models and coupling at the meso scales must contain 

accurate and efficient tools for those tasks.     

For the code to be truly predictive, it needs to employ Uncertainty Quantification (UQ) and 

Sensitivity Analysis (SA) capabilities. Module coupling and time-scale bridging complicates both 

UQ and SA studies.  

The code needs to be customer friendly (i.e., have an “easy” user interface) in order to be 

effective in a community far removed from the development of the code itself.  

Finally, as an overarching requirement, the code effort also needs access to programming 

models and programming languages that facilitate the development of multiphysics, modular 

simulation codes. 

ECT Summary for the Fuels IPSC 

We have identified several areas where the Enabling Computational Technologies component 

could help in the Fuels modeling effort:  

• The first barrier for a potential user to adopt the fuels (or any other) code is the interface 

with the code itself. ECT can help the code team design and develop an easy-to-use GUI-

based interface for code running and code steering.  

• The Fuels code team is interested in tools that would improve productivity and position the 

fuels code to satisfy the software engineering requirements of the user base. ETC can 

provide SQA methodologies that, if followed, will satisfy the formal Program software 

engineering requirements. In particular, ECT can provide tools for including unit testing, 

regression testing, automake, software documentation, and a host of SQA functions.  

• The Fuels code requires advanced meshing capabilities. In addition the coupling of multiple 

physics packages having diverse mesh requirements (e.g., neutronics and structural 

mechanics) will also require mesh to mesh transfer capabilities. 



• The loose coupling (thin backplane) approach taken for the Fuels code means that each 

physics model would have its own data structure. This will require visualization and data 

analysis tools able to access a multiplicity of data structures. ECT has already started work 

to make sure that VisIt satisfies these requirements (supporting ITAPS mesh data model, 

ADVENTURE output, etc.) and can serve as the visualization tool of choice.  More work 

needs to be done in this area. 

 

 

ECT for the Waste Forms IPSC 

Overall Waste Forms IPSC Goal 

The objective of the NEAMS Waste Forms (WF) IPSC is to provide an integrated suite of 

computational capabilities for simulating the long-term performance of waste forms in the 

engineered environment of a waste storage or disposal repository. This suite will include first-

principles codes for characterizing the properties of the waste form, high-fidelity modeling of 

coupled degradation and transport phenomena, and a set of efficient surrogate models of 

known accuracy in well-specified performance assessment regimes. The surrogate models will 

enable production of simulation results with which quantified predictions can be made. The 

ultimate goal is to support predictive simulation-based, risk-informed decision making about 

managing future US nuclear waste.  

Three levels of simulation fidelity will be used in the WF IPSC. Together with experimental data, 

sub-continuum simulations of maximum fidelity, continuum physics models of high-fidelity, 

and, at the lowest fidelity level, surrogate simulation components, abstracted from the high-

fidelity simulations. 

The sub-continuum simulations and experiments will be used to characterize material 

properties and mechanistic processes significant to waste forms in repository environments. In 

particular, they must determine key state and transport properties needed to model the 

evolving isotopic composition within the waste form matrix and along repository environment 

pathways. Understanding of these properties is necessary to specify accurate constitutive 

relationships for high-fidelity continuum models. Many of the sub-continuum simulation 

capabilities necessary to develop this understanding are primitive or do not yet exist; it is 

anticipated that they will be developed and supplied by the Fundamental Methods and Models 

(FMM) element of the NEAMS Campaign.   



Knowledge of the state and transport properties resulting from the sub-continuum work will be 

used to develop and verify high-fidelity macro-scale continuum physics models. These models 

will be used to investigate multi-physics processes that couple thermal, hydrological, chemical, 

and mechanical (THCM) phenomena in repository environments. The results of these 

simulations will be used to identify the relevant governing equations, constitutive models, and 

accuracies required for abstracting waste form surrogate performance assessment models. 

At the lowest level of fidelity, surrogate simulation components are abstracted from the high-

fidelity simulations. The surrogate simulations are intended to be “robust and fast,” and can be 

used for performance and design assessment analyses over large many combinations of waste 

forms and repository environments. Naturally, the surrogate simulations must be verified 

against corresponding high-fidelity simulations. The surrogate THCM performance assessment 

(PA) simulations are expected to employ several alternative modeling approaches, ranging from 

the use of high-fidelity continuum models together with reduced-dimension realizations of the 

waste form and environment to the use of abstracted models that are simple calibrated 

response-surface functions. The surrogate PA models will be self-contained modules that are 

flexibly linked together to simulate specified waste forms and disposal scenarios to a specified 

accuracy.  A primary computational efficiency objective in the design of the PA codes is to have 

the capability to efficiently simulate hundreds or even thousands of distinct disposal scenarios. 

Figure 6 The Waste Forms IPSC must simulate the design of waste products and their storage 

environments for safety and stability over exceptionally long time spans. 



Both the integrated high-fidelity THCM simulation codes and the surrogate PA codes will have 

embedded sensitivity analysis capabilities to support verification and validation (VV), 

uncertainty quantification (UQ), and design optimization analyses. Again, many VV and UQ 

functions are either primitive or not yet extant; development of the embedded sensitivity 

analysis capabilities and UQ tools will be in collaboration with the Verification, Validation, and 

Uncertainty Quantification (VU) element of the NEAMS Campaign. 

A special purpose WF IPSC framework will be developed to support analysis of key 

phenomenological processes. The WF IPSC framework architecture will include consideration of 

inter-fidelity coupling, THCM multi-physics coupling, and a workflow framework. Modular 

simulation components will plug into the WF IPSC framework through well-defined interfaces. It 

will be essential for this framework to ensure transparent, traceable, reproducible, and 

retrievable simulation results in order to satisfy regulatory compliance requirements such as 

those associated with the Yucca Mountain Project (YMP) and Waste Isolation Pilot Plant (WIPP). 

The WF IPSC will use software quality engineering (SQE) best-practices to develop high-

confidence software components, coordinate large distributed development teams, and 

respond to evolving requirements. 

Waste Forms Simulation Components 

 

Sub-continuum Materials Properties Characterization 

Current capabilities: The sub-continuum materials properties characterization effort must 

provide a host of reliable quantified descriptions (models) for an extremely broad range of sub-

continuum physical phenomena, spanning chemistry, physics and materials science. The sub-

continuum research tools that are required to simulate many of these phenomena are 

deterministic, “first principles” methods whose accuracy is fundamentally limited by the fidelity 

of the physical model rather than the parameterization of that model.  A wide scientific 

community already uses an extensive collection of codes, methods, and techniques to model 

many of the phenomena of interest to waste forms, and the sub-continuum properties 

characterization effort will leverage this body of work whenever possible. Today, however, 

research tools at the sub-continuum scale are often in a continuous state of development, 

constantly implementing improvements to the physical approximations that underlie the 

methods. As a result, the current state of the development and application of methods to 

simulate sub-continuum phenomena is highly dynamic and distributed widely among many 

institutions. This poses special challenges for the WF IPSC, where the process requires detailed 

traceability with documented reproducibility and propagating verified, validated quantified 

uncertainties.  

 



The FMM element of the NEAMS campaign is charged with furnishing simulation capabilities at 

the sub-continuum scale. It is anticipated that WF IPSC and FMM will collaborate to identify 

crucial gaps in sub-continuum simulation capabilities and any significant code or method 

development needed at these scales will be undertaken in coordination with FMM.   

 

Moreover, many of the computer codes used in sub-continuum simulations relevant to waste 

forms will be commercial or otherwise proprietary codes, where the source code may not be 

directly accessible, or open source tools codes without formalized software quality practices, or 

“research” codes developed and used by individual investigators without any formal 

distribution. This heterogeneous software environment must be integrated into the materials 

properties characterization needed for the WF IPSC modeling suite, but it poses a daunting 

challenge for a controlled overall simulation system required to propagate uncertainties 

through a hierarchy of simulations. Regardless of the origins of the simulation code, all 

simulation results that enter the data flow of the WF IPSC process will be required to 

demonstrate qualification: documented verification evidence of suitability, establish 

reproducibility and traceability, and validation for application of the code to the computation of 

the quantities of interest.  

 

High-Fidelity Continuum Models 

Current capabilities: It is not possible to use sub-continuum materials models for large scale 

“waste form to near-field scale” simulations due to the length and time scales involved. The 

sub-continuum models will help provide parameterization for constitutive models used by the 

high-fidelity THCM models and, moreover, will identify and give improved understanding of the 

phenomena that are incorporated into the physical abstraction represented by a constitutive 

model. Hence, the fidelity of a constitutive model is dependent on both an abstracted physical 

model and the numerical realization of that model. 

 

 Upscaling—communicating information between different temporal and physical scales—is 

central to the success of the WF IPSC. But current upscaling techniques are mostly ad hoc, 

application-specific, and are generally not adequate for coupled non-linear process in 

heterogeneous media. New computational tools and methodologies are needed for linking 

different scales and representing processes to obtain high-fidelity predictions beyond the range 

of conditions and scale at which models and parameterizations were developed. To date, 

success stories are few. 

 

The central high-performance part of the WF IPSC code suite is the high-fidelity THCM layer in 

the modeling hierarchy. The high-fidelity THCM code will model non-linear, highly coupled 

physical phenomena, and be composed of multiple interacting software components. The 



exceeding complexity of the phenomena and software used to simulate it and the numerical 

challenges of modeling a non-linear, highly coupled environment place stringent demands for 

detailed verification and validation. It is anticipated that much if not most of this code will need 

to be developed and deployed under the auspices of WF IPSC, and thereby directly benefit from 

use of sophisticated software quality engineering practices. 

 

The development of the high-fidelity THCM software will follow sophisticated software 

engineering practices, with version control, comprehensive test suites, unit testing, regular 

regression testing, build tests, etc., so that to the extent possible verification will be built in. An 

infrastructure will be constructed for the development of the software that will enforce these 

practices. Typical model validation compares a model’s results with experimental 

measurements and/or field observations. However, such measurements will be impossible to 

obtain for the high-fidelity THCM software and the Integrated Assessment Code at the 

(geologic) temporal and spatial scales of interest for post-closure repository performance. 

Validation for short-term WF performance will be demonstrated using all available data for 

short time scales, and will entail coordination with a robust experimental program. Predictions 

of the WF IPSC modeling suite at geological scales will be extrapolated from this foundation and 

will be validated using corroboration, technical review, and natural analogues. 

 

 

Surrogate Performance Analysis Codes 

Upscaling from high-fidelity continuum models to the surrogate models that will be used in the 

Integrated Assessment Code will make use of and, where appropriate, extend approaches 

similar to those used previously for other nuclear waste programs [5,10]. It is envisioned that 

these approaches can range all the way from relatively simple cases on the lower end to the 

more sophisticated at the higher end. At the simplest end of the range, the surrogate model 

may use something as straight-forward as a lookup table and interpolation of results that are 

provided by the Hi-Fi continuum code (e.g., the porosity surface method used by WIPP to 

indirectly couple mechanical closure with two-phase fluid flow calculations). At the more 

sophisticated end, full-up system-scale coupled continuum analyses may be performed by the 

surrogate model albeit with significantly coarser discretizations (and perhaps different 

partitioning of materials to represent the system and different solution techniques) than those 

used for the high-fidelity continuum model. The Integrated Assessment Code is intended to 

execute very quickly for the purpose for generating statistical information needed for the 

performance assessment and decision analysis. The surrogate models contained within it are 

meant to mimic the essential features of the high-fidelity THCM simulations with sufficient 

accuracy to satisfy certification requirements to a desired confidence. 

 



Uncertainty Quantification 

There are two approaches to UQ: a sampling-based approach and embedded approach. In a 

sampling based approach to UQ, simulations are used as black boxes and the calculation of 

response metrics of interest is based on a set of simulation response evaluations. Hence 

sampling-based approaches have been traditionally used when very complex and extensive 

applications already exist and retrofitting them to gain access to internal variables in the code is 

not feasible. The embedded approach requires new solvers/codes designed for the 

reformulated system of equations. The advantage of the embedded approach is that it finds the 

representation of model outputs by a one-time solution of the reformulated model. The IPSC 

intent is to research, evaluate, and pursue the embedded approach. A byproduct of uncertainty 

quantification will be sensitivities of the simulation results to the various input parameters. The 

sensitivity analyses will be used to identify important phenomena/parameters and help refine 

the PIRT, and the SA also will be used to quantify the requirements for sub-continuum scale 

evaluations of the quantities of interest within the constitutive models. 

Tools and Libraries Summary for the Waste Forms IPSC 

The Waste Forms IPSC team has identified several categories into which their software 

requirements fall: 

• Workflow management 

• Multi-physics coupling 

• PDE modeling and solvers 

• Pre- and post-processing 

• Numerical solvers 

• Sub-continuum 

• SQE software 

• VU tools  

 

The IPSC has identified a set of candidate software packages to fill these needs.  For example, 

they are considering: 

• Salome      (Workflow management, Multi-physics coupling, Pre- and post-processing ) 

• Sierra        (Multi-physics coupling, PDE modeling and solvers, Pre- and post-processing ) 

• Trilinos      (Multi-physics coupling, PDE modeling and solvers, Pre- and post-processing, 

numerical solvers, SQE software, VU tools) 

• Dakota       (VU tools) 

• ITAPS         (PDE modeling and solvers) 

• CUBIT        (PDE modeling and solvers, Pre- and post-processing) 

• Common Component Architecture  (Workflow management, Multi-physics coupling, 

PDE modeling and solvers, Pre and post-processing, Numerical solvers) 



 

The IPSC has embarked on a “gap analysis” of their computational technology as a major FY10 

undertaking, and also plan to perform a detailed comparative analysis of the tools mentioned 

above as candidates to fill their software needs.  

 

 

ECT for the Separations and Safeguards IPSC 

Overall Safeguards and Separations IPSC Goal 

The vision of the Safeguards and Separations IPSC team is to develop the next generation of 

fuel cycle separation and waste management technologies that enable a sustainable fuel cycle 

with minimal processing, waste generation, and potential for material diversion. In some ways 

this is the IPSC with the greatest diversity of mission.  While they must undertake multiphysics 

simulations, for example, to discover the fundamental nature of the separation processes, by 

which the various species of fission products can be teased out of the waste package, mitigating 

the harmful effects of storing highly radioactive waste long term, this code team must also 

develop tools to model and improve on the accounting and accountability systems that track 

the locations and quantities of nuclear storage; this latter work involves an entirely different 

mindset, and a different set of tools, than the more traditional physics-based simulations.  

The Safeguards and Separations IPSC is newly begun in FY09, and hence has less history than 

the Reactors and Fuels teams. As a result, they are still in the process of determining their 

computing needs (both hardware and software tools).  The fundamental approach, however, 

represents a dramatic change in thinking from the predecessor programs. In previous 

programs, computational support for project elements concerned with separations have 

focused on modeling the UREX (uranium extraction) process and on developing flow sheets that 

follow and track special nuclear material throughout the fuel cycle. This previous focus has 

employed testing with used fuel, employing only a limited understanding of fundamental 

properties.  
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the variety and complexity of the tasks before them. 

The Safeguards and Separations IPSC is taking a new approach.  While the team still needs to do 

flow sheet tracking of materials, e.g., the primary focus is moving from empirical examination 

of data to an approach based on fundamental science.  The team is employing a research and 

development focus based on understanding the fundamental physics underlying the 

separations process, and have set goals to create efficient modeling routines to develop a 

fundamental understanding of both aqueous and electrochemical separation methods.

Modeling and Simulation Needs 

The Safeguards and Separations IPSC teams have identified a host of modeling and 

needs.  A selection of the most pressing needs is listed below: 

 

Subscale chemical &  physical models 

Flexibility to expand to new chemistries 

Dynamic process models of separation processes  

Plant simulation models for plant designs 
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Tools and Libraries Summary for the Safeguards and Separations IPSC 

ECT needs for the Safeguards and Separations element encompass a wide variety of codes and 

activities.  Among the most obvious ECT needs are:   

 

Language Interoperability: Due to the wide variety of the Safeguards and Separations 

activities the IPSC must simulate or monitor, there are already numerous extant codes 

dealing with many parts of the process. But these legacy codes span a wide range of 

platforms, architectures, and operating environments.  They are also likely to be written in 

any of a lengthy list of languages or wrappers. While some of the Safeguards and 

Separations codes are written in the traditional C and C++  languages, a good number are in 

other languages, including Excel, Simulink, Octave, and Fortran, among others. While many 

of these are written as stand-alone units, it will be increasingly important that they be 

linked (or at least linkable) as the team develops full end-to-end simulations. Hence, a 

growing need is for tools (for example, LLNL’s Babel) that facilitate the common use of the 

tools in larger, overarching packages. 

 

Graphical Interfaces. Many of the codes for Safeguards and Separations involve the user 

selecting from a number of different options to produce a suite of results rapidly.  These 

codes would benefit from having a consistent set of graphical user interfaces allowing the 

tools to have a common “look and feel” that users can be familiarized with easily.  This 

allows the user to quickly learn to operate a number of codes spanning a range of the 

proceses. 

Visualizations of the simulations. Some of the simulation codes in this area are significantly 

complex, modeling the fundamental physics and chemistry of the separation processes. 

They will take considerable resources to run, and will generate fairly large data sets as their 

output.  Analyzing the results of these simulation runs is dependent on having effective 

analysis tools, starting with having a good method for visualizing the results and exploring 

the output datasets.      

Common themes among the ECT needs 

One of the principal activities of the ECT team since funding commenced in April, 2009, has 

been gathering the information presented above regarding the goals, current capabilities, and 

ECT gaps of each of the IPSC teams. Not unexpectedly, a number of commonalities or 

similarities emerged in the ECT gaps facing the code teams.    In this section we briefly identify 

the most obvious commonalities. In these cases, it should be feasible that the similarity of the 

needs would lead to common technological solutions that can be shared among the IPSC teams. 

In the longer view, these common solutions can form a toolkit available not only to the IPSC 

teams, but to the greater NEAMS community, including end users.  



• Meshing tools.  Each of the IPSC teams, in some application or another, indicated a 

need for meshing tools.  Two types of tools were particularly in demand.   

o Mesh generation has special characteristics for many NEAMS applications.  This 

is due to a number of factors, depending on which team’s applications are 

examined.  For example, the Fuels IPSC is modeling complicated systems in 

which the fluid dynamics of coolant over intricate geometries of bundled fuel 

rods wrapped in wires must be computed.  The computational mesh for this 

modeling is extremely difficult to generate, and requires intense human 

intervention.  Existing mesh generation tools lack the robustness to handle the 

special characteristics that naturally occur in several NEAMS applications.  

o Mesh-to-mesh coupling is necessary in several NEAMS activities for multiscale or 

multiphysics coupling.  Easy and accurate methods of moving information 

computed on a grid at one scale to a grid at a different scale are important. 

Another very common reason this is a critical technology is the intricate 

geometric shapes that must be modeled in reactor cores, in fuel packages, in 

waste form design,  or in calculating the effects of equipment used in separation 

technology.  In these settings, it is frequently necessary to simultaneously model 

components of dramatically different shapes.  Necessarily, the grids for these 

shapes are highly unlikely to be nicely aligned or compatible.  Currently, there 

are no general tools readily available to the NEAMS community for this purpose. 

• Solver technologies. Many of the simulations to be run by the IPSC teams require the 

solution of large systems of linear of nonlinear equations.  Indeed, this is true of most 

multiphysics simulations, which often involve time-stepping algorithms with a large 

system of equations that must be solved at each time step. Each of the IPSC teams 

noted the need for high-quality, efficient solvers.  However, this does not appear to be 

the highest priority for the teams, for two reasons.  For one, high-performance solvers 

(especially for linear systems) exist and are easily obtained (e.g., PETSc and hypre).  

While these solvers may not be fully effective for all the specialized problems of the 

IPSCs, they suffice for the present, and other ETC needs are more pressing.  When those 

other needs have been addressed, solvers will once again take a preeminent role in the 

needs of the code teams. 

• User Interfaces. Several of the IPSC teams mentioned a need for the development of 

user interfaces.  Such interfaces are highly useful for facilitating the rapid setup of 

problems, easy selection of operating parameters, and efficient coupling of multiple 

programs.  This  technology development was requested rather more often than 

expected. 

• VisIt visualization tool. The VisIt visualization tool is widely used and meets many of the 

IPSC teams needs; however, a number of extensions are required to support data 



models for some applications.  (While VisIt is the most widely used visualization tool, 

the Waste Forms IPSC indicated that they may prefer ParaView for their visualization 

needs.  The ECT team will determine what functionality ParaView presents and how it 

might also be made available to the teams.) 

• Software Quality Assurance. SQA practices vary widely among the code teams.  In some 

IPSCs (most notably Waste Forms), SQA is being incorporated in the software 

development from the initial planning , while for other IPSCs SQA practices are in 

various states of use. The different teams requested different levels of help in the SQA 

area.  One obvious area of concern is in trying to accomplish a NEAMS-wide common 

approach to SQA, resulting in a standard level of quality assurance, without attempting 

to prescribe the use of specific practices or tools. 

• V&V and UQ. The NEAMS mission to provide end users with high-performance 

simulation capabilities that are efficient and reliable predictors of the physical systems 

requires that both V&V and UQ tools be incorporated into the process; hence the 

NEAMS VU element, whose task it is to provide such tools. It is incumbent on ECT to 

work closely with the VU element to determine if and how ECT can support the VU 

collaborations with the IPSC teams. 

• Access to Computing Hardware. The IPSC teams require access to significant computing 

resources. While significant computing time is available through time grants at various 

user facilities, and particularly on INCITE awards, it is clear that reliance on these non-

dedicated compute resources is untenable for the long term needs of the program.  A 

major portion of the ECT effort is to be devoted to the creation of one or more NEAMS 

dedicated user facility.  

Possible ECT Solutions from ASC and SciDAC 

As described above, the apparent ECT needs of the IPSC teams show a good deal of overlap, 

with many of the same needs showing up for several, or even all, of the code teams.  It was 

noted that many of the issues faced by the teams are similar to issues faced by code teams in 

the ASC Program, the SciDAC Program, or both.  It should be no surprise, then, that there is a 

body of tools already available that was developed through the ASC, SciDAC, or Office of 

Science base programs.  The ECT team has identified a number of such tools that may be 

employed in the NEAMS program. 

Tools developed in the ASC Program include: 

• Scalable linear solvers, such as the hypre, or trilinos packages. 

• Meshing tools, such as mesh generators, adaptive mesh refinement (AMR) packages, 

and mesh partitioners (e.g., Cubit, SAMRAI, Zoltan). 

• Visualization tools such as VisIt or Paramesh. 



• Technologies for coupling problems or meshes together, for example Sierra or 

Carter/Overlink. 

• Performance tools, including compilers, debuggers, memory analysis tools, etc.  A good 

example is the TotalView parallel debugger.  

• Expertise in deploying user facilities. 

Tools developed through the efforts of SciDAC or the Office of Science include: 

• Scalable linear solvers such as PETSc or TOPS. 

• Adaptive mesh refinement, front tracking, and interoperability tools, such as  MOAB, 

ITAPS, and Babel. 

• Performance tools such as PERI. 

• Scalable Data Management tools, such as SDM.  

The collected tools and expertise of the ASC, SciDAC, and Office of Science programs form a 

considerable and valuable body of work that ECT will work to integrate into NEAMS technology 

wherever feasible.   

Plans for customizing tools 

In the FY09 effort, ECT has identified a number of existing technologies that can be modified, 

extended, or customized to be suitable for filling the ECT gaps of the NEAMS code teams. 

Assuming FY10 budget permits, it is planned to support the initiation of several customization 

or extension efforts: 

• Scalable mesh coupling technologies have been identified as a critical component in 

both the Reactors and the Fuels IPSCs.  This includes the need for flexible tools for 

mesh-to-mesh transfer of field data.  ECT has identified several tools that might be used 

as starting points, from which a mesh-to-mesh tool could be constructed.  These 

possibilities include Carter/Overlink, MOAB coupling tools, Kuprat’s coupling tools in 

Truches, and the SIERRA toolkit. 

• Visualization is crucial to making sense of the data output by large-scale simulations.  

The VisIt tool, under development for some years by all three sources (ASC, SciDAC, and 

Office of Science) is the most widely used of the available visualization tools.  For use 

with NEAMS certain extensions are indicated: 

o Support sets and tags for ITAPS data model 

o Complete support of Adventure plug-in for the Fuels IPSC 

o Develop in situ analysis tools 

• Mesh generation tools are necessary in several applications, notably the fuels and 

reactors IPSCs, both of which must deal with simulations over complicated geometries. 

ECT has identified CUBIT as a starting point but notes that CUBIT needs modifications to 



support specific needs of the NEAMS program.  Furthermore, the Open Source 

requirement of NEAMS may pose a problem with CUBIT. 

• Linear solvers are essential to many of the simulation programs.  A host of linear solver 

technologies has been constructed over the past decade, but would require some 

research and modification for the NEAMS effort.  One particular area of interest is the 

development of multigrid solvers that take advantage of operator sparsity in neutronics 

calculations. 

  



Pillar 2:  Software Quality Assurance for NEAMS 

In this portion of the report, we detail the plan for the suggested Software Quality Assurance (SQA) 

approach for the NEAMS program.   We begin by defining the terms for software quality processes that 

are used throughout this section.  We highlight the key aspects of the Advanced Fuel Cycle Initiative 

(AFCI) graded quality rigor levels and define 9 key concepts that are suggested for NEAMS use in 

managing software quality practices.  We conclude with a discussion of managing ongoing risk and a 

summary of our recommendations. 

Introduction and definition of terms 
Before addressing the NEAMS SQA approach it might be appropriate to review and define terminology 

related to SQA as used in this document. 

Engineering can be defined as a discipline which applies technical and scientific knowledge to accurately 

predict the performance of a design, process, or system in the physical world in order to meet a desired 

objective or specified criteria. Engineering would be the antithesis of “trial and error”. Therefore 

Software Quality Engineering is a discipline that applies technical knowledge and computer science 

expertise to accurately predict the effectiveness of a software development process to produce a 

product or service that meets its desired objectives. Software Quality Engineering includes both the 

process and the product. A practitioner of this activity would be a Software Quality Engineer. As an 

example, Software Quality Assurance would be the activities that confirm that Software Quality 

Engineering is taking place within the software engineering process being used, such as an audit against 

a process standard or an assessment. Software Quality Control would assure that Software Quality 

Engineering is taking place on the product being developed, and would consist of activities such as 

inspection and testing of the product (Table 1). 

Software Quality Assurance: Software Quality Control: 

Is Software Quality Engineering taking place in the 

process? 

Does Software Quality Engineering exist in the 

product? 

Error Prevention Error Detection 

Verified by Auditing Validated by Testing 

Table 1. SQA and SQC 

In the commercial software industry the terms Software Quality or Software Quality Engineering or 

Software Quality Assurance are often used to describe practitioners or groups that primarily engage in 

system level testing activities. Certainly software testing is part of Software Quality Engineering if it is 

done using technical and scientific knowledge to predict the outcome of running a test case. The test’s 



outcome is usually expressed as the expected result of running the test case. The expected result is 

compared to the actual result to determine whether the test passes or fails. Testing has two purposes in 

theory, to validate that the software meets its requirements and to expose any defects (variations from 

the requirements or unexpected behavior). All too common in practice however, is a lack of up-to-date 

requirements in enough detail to be useful for building test cases. Without adequate requirements, 

software testing becomes more a defect exposing discipline than a requirements validation discipline. 

The old adage “you cannot test in quality” stems from the fact that if the software does not do what the 

customer requires it to do, exposing and removing most of the defects will still not allow the software to 

do what the customer wants it to do. Testing is a detection activity and commonly used all during the 

software development process (hopefully not just at the end). The creation of good tests (the fewest 

number of tests that cover the most features and code and find the most defects) is as complex 

technically as the creation of good code (the fewest lines of code that implement the most desired 

features and contain the fewest defects). However Software Quality Engineering encompasses many 

more detection and prevention activities beyond those associated with testing. Software Quality 

Engineering includes processes that can be used to elicit, analyze and trace requirements,  architecture, 

design, and interface design and optimization, coding standards, inspections and reviews, templates and 

checklists, audits and assessments, change management, configuration management, static and 

dynamic code analysis, assurance of compliance to governing standards, determining customer 

satisfaction levels, analysis of  trends and root cause analysis, measurement of the effectiveness of 

development processes, automation of development processes such as make/build, requirement 

tracking, defect tracking, design tradeoffs, inspection and review, risk assessment and risk management, 

as well as all aspects of unit, integration, and system level testing. Many software quality organizations 

such as the American Society for Quality (ASQ) would also include software project management as 

another software quality discipline. Certainly having capable software project managers who 

understand software quality engineering and are experienced developers themselves will increase the 

likelihood of a project’s success. 

Recommended SQA Approach for NEAMS 

The recommended SQA approach for NEAMS is based on experience with ASC research 

simulation codes. The ASC research simulation codes have the following characteristics:  

• Research and Development environment 

• Multi-physics simulation codes 

• Staff consisting of Physicists, Material Scientists, Computer Scientists 

• Languages used include C, C++, Fortran, and Python 

• Platforms are parallel clusters and High Performance Computing (HPC) 

 

Research Simulation Code is Different. The Research and Development software development 

environment has unique characteristics that are not found in other major software 

development areas such as commercial, military, MIS, outsourced, and systems. Research 

software development as a field is relatively small marketplace and therefore not of much 



interest to the mainstream software industry. Consequently relatively little emphasis is placed 

on this segment, in terms of historical data and tools. A major characteristic of R&D software is 

that it follows the scientific approach of forming a hypothesis, conducting experimentation, 

observation, and conclusion. It is iterative in nature and involves trial and error. From the 

software standpoint requirements (i.e. desired physics features) require the ability to 

experiment with the code to achieve an optimum design and implementation, both from a 

numerical precision and performance perspective. Knowledge gained experimenting with the 

design often changes the design approach to meet the requirements. Often a researcher is 

writing code to implement a design that has never before been done; this is in contrast to code 

written to implement an accounts payable system, the design of which is pretty well 

understood. 

Brings Together Different Disciplines: The research environment may combine multiple physics 

disciplines together in a single code, for instance hydrodynamics, thermal, chemistry, EOS, and 

molecular dynamics. The research simulation codes typically require mesh generation, solvers, 

and visualization capabilities. The complexity of the codes require years of specialization and 

advanced degrees just to understand how to use them. They typically require large and 

specialized parallel platforms to execute the code in a timely fashion. This creates a unique 

environment where physicists, material scientists and computer scientists must work together 

closely to develop the codes. Oftentimes developers of the research simulation codes are also 

the users. Their backgrounds may be highly specialized in material sciences, but limited in 

computer science or software engineering. Popular languages used are C, C++, Fortran and 

Python, which is considerably different than main stream software which focuses on browser 

based Java and powerful tool kits and IDE’s. The platforms used to support research simulations 

codes are typically Unix/Linux clusters or special purpose highly parallel super computers. 

Because research software is a relatively small software market, few open source and 

commercial tools and tool kits are available. The characteristics of research simulation codes 

create considerable challenges not encountered in main stream software. Recruiting of 

qualified staff is also difficult and getting harder when US citizenship is required. All of these 

characteristics make the application of SQA much more challenging than most DOD software 

projects or commercial software projects. 

What works: The recommended SQA program for NEAMS research simulation codes will 

include “what worked” and minimize “what did not work” on the Advanced Simulation and 

Computing (ASC) program, as well as highlight ASC best practices, industry best practices, and 

software productivity tools that have proven useful. Leading the list of things that worked are 

SQA improvements that also improved development productivity, specifically automation of 

processes. Since these productivity enhancements improve code quality and make the 

developer’s life easier, there is little adoption resistance; one example would be adoption of 



automated regression testing. Compliance simplification was also readily accepted. Being in 

compliance with concrete criteria based on a risk assessment is much easier to adopt than 

trying to remember three or more complex and overlapping government standards. Quality 

must go in at the beginning; it is very difficult to test enough to compensate for code that is 

poorly written. In some extreme cases entire code teams were replaced by new staff that was 

willing to follow required practices. Embedding SQEs within code teams to work as peers, 

rather than “audit and punish” worked well. Embedding the SQE’s requires SQEs with developer 

skills; however the SQEs are viewed more as helpers than enforcers. As a result of embedding, 

software the quality culture gets adopted more readily by developers. Researchers as a group 

are less responsive to hierarchical edicts and more responsive to those seen as “peers with 

knowledge” who can be of help. 

Multi-level automated regression testing works well and has improved the quality of released 

code, along with use of code repositories. If smoke tests take too long (longer than 30 minutes) 

they will be avoided, so keeping the test times short and selecting the fastest tests with the 

most code coverage is critical. From a support standpoint, user surveys indicated that users 

being able to walk down the hallway and explain to a developer a problem or ask how a feature 

works in a code were invaluable. Unit testing, which is not emphasized on all codes, is gaining 

popularity as new tools like CPPunit are maturing. Design by Contract (DBC) has also proven to 

be successful, as codes that use DBC tend to have lower defect rates. Whenever possible doing 

an activity should produce an artifact, rather than require developers to spend time 

documenting things that are not valuable to users of the code. Status meetings and scrums 

typically use applications such as Source Forge Enterprise Edition projected overhead to 

capture in real time comments, design tradeoffs, action items, task assignments, defect status, 

requirement tracking, etc. These captured artifacts are then searchable and available to the 

project at future dates. This technique has earned a number of noteworthy practices during 

independent DOE audits. Artifacts can be hierarchically or peer associated, for instance defect 

repairs and new features can be associated with particular releases and release notes in a 

repository, appearing as release notes or comments. Pydoc and Doxygen are two useful tools 

used to format and report embedded comments in headers or revision descriptions. Some tools 

also contain workflow logic which enforces a particular process. For instance before obtaining a 

new build number, certain actions have had to be taken on the part of the developer, such as 

finishing code reviews, designating a set of tests, creating a local branch, passing the regression 

tests on the local branch, etc. 

The biggest surprise in using the risk graded approach and embedding was the reversal in code 

team desired risk levels. Prior to risk assessments code teams were biased to do the fewest 

number of practices and least rigor levels. When the risk assessment process was installed code 

teams in some cases actually wanted to operate at a higher risk level rigor because they felt 



their code was important. The avoidance tendency disappeared and major codes became 

expert at assuring risk level adherence in their feeder codes and library suppliers. 

What Did Not Work. Equally important from retrospectives is what did not work well in the 

research simulation environment. Leading the list is prescriptive and heavy weight software 

development processes or the notion that SQA is additional work to do by the developers. The 

top down approach to compliance is less effective with researchers. Experience indicated that 

there must be a buy in at the grass roots level for processes and tools to be successful. 

Conducting audlets (small informal audits) using personal interviews was very effective 

compared to a written questionnaire. With interviews SQE can ask questions in different ways 

to discover information. The questionnaires were often misunderstood and avoided by 

developers. If the SQEs are viewed as adversarial the developers tend to isolate and keep 

information tightly held. Another pitfall was manually intensive make and build processes; this 

was especially troublesome for codes which had to run on numerous platforms. Tools to 

automate the make build process were used to overcome this pitfall. Lastly not version 

controlling feeder codes and libraries caused major heartburn. If the feeder code changed an 

interface without the major code knowing about it, the simulation would break and require 

considerable time to isolate the source of the problem. Feeders and libraries now communicate 

in advance all changes that may affect users and do not make changes between major releases. 

Common Pitfalls. Other pitfalls along the way included the evolution of a good research idea. 

There were cases where a code started our being routine research and low risk. As time went 

on, the code became very successful, and became used for decision informing purposes. This 

created a situation where a QR3 code was now doing QR2 tasks, but was built using QR3 rigor. 

A number of mitigation steps were found helpful in this situation. These included always having 

code results reviewed by domain experts and use of professional judgment to validate code 

results, use of wrappers to limit the codes operation to well tested domains, increased use of 

unit testing, assertions, and design by contract. In the worst cases code refactoring was 

employed. Lesson learned was to consider starting at a higher rigor quality level at the outset if 

it is possible for the code to grow in importance over time. As mentioned earlier, not paying 

enough attention to the quality of the feeder and library codes caused numerous problems. 

Some of these codes were being supported by a part time physicist and the code kept in home 

directories. This of course caused problems for the major codes higher on the food chain. 

Pushing compliance down to the feeders and libraries eliminated many of the problems. Having 

the SQEs set up code repositories and conduct training, set up automated testing and defect 

trackers also helped. SQEs also do audlets on codes supplied by external sources, such as other 

labs and universities. Mitigation steps included assuring a battery of regression and acceptance 

tests to catch any problems in new versions of the external codes. Most external suppliers 



agreed to be interviewed to determine the rigor of their quality system. Understanding the size 

of the suppliers install base also helped in understanding the codes quality.  

Balancing Discipline and Agility: One of the largest challenges facing research simulation codes 

such as NEAMS is the balancing of agility and discipline. On the one hand it is the desire of the 

developers and users to include the latest and greatest physics in the simulations and quickly 

incorporate new insights into the code. Some of these new physics features may or may not 

work well or may require design iteration to become useful. On the other hand the resulting 

simulations must have credibility and be built with a software process that produces code with 

the desired feature sets and a low defect rate. In medical, mission critical, and avionics codes 

the balance point must be heavily biased towards discipline. The ease of changing the code and 

time lag to produce a new build takes a back seat to rigorous process that assures the lowest 

possible defect rate. By comparison, demands are frequently made on research simulation 

codes that new features be added quickly, and this usually takes a back seat to a heavy weight 

and cumbersome development process. It is balancing the freedom for research and 

exploration with the dependable behavior and correctness of the code that create a unique 

challenge for research simulation code development and SQA. Using a risk technique found in 

Barry Boehm’s and Richard Turner’s book “Balancing Agility and Discipline” indicates a show 

stopper risk to research simulation codes if they use plan driven methods (table 2). 

 

Table 2. Research Code Risks  

Risk Item                                                                                        Risk Rating
Environmental risks
Technology uncertainties Very serious but manageable 

risk
Many stakeholders Very serious but manageable 

risk
Complex system of systems Very serious but manageable 

risk
Risks of using agile methods
Scalability and Criticality Serious but manageable risk
Use of simple design Serious but manageable risk
Personnel turnover Minimal risk
Not enough people skilled in agile methods Minimal risk
Risks of using plan driven methods
Rapid change Show Stopper risk
Need for rapid results Show Stopper risk
Emergent requirements Show Stopper risk
Not enough people skilled in plan driven 
methods

Moderate risk



The AFCI Graded Quality Rigor Levels

The NEAMS AFCI Quality Assurance Program Document (QAPD) has chosen a graded approach 

for quality.  There are three quality rigor levels. Quality Rigor Level 3 is for routine R&D, 

feasibility studies, conceptual designs, exploratory tradeo

Level Rigor 2 is for technical analysis used to inform policy reporting to congress or 

stakeholders, analysis for national environmental policy, and critical or controversial decisions. 

Quality Rigor Level 1 is for facility safety, NRC licensing rela

facilities, or benchmarking of a methodology that has potential for NRC approval. 

Quality Rigor Level 3 for software requires adherence to DOE Order 414.1

appendix B of the QAPD. Quality Rigor Level 2 for software requires adherence to DOE Order 

414.1-C and section 1.6 and appendix C of the QAPD. Quality Rigor Level 1 requires adherence 

to DOE Order 414.1-C and section 1.6 of the QAPD and NQA 

with subpart 2.7 optional. 

Table 3.  AFCI QAPD Graded Approach

Key SQA Concepts for NEAMS

In order to meet the requirements of the AFCI QAPD and to also incorporate lesions learned 

and best practices for ASC scientific research codes, the remainder

recommend nine key concepts for incorporation in to the MEAMS SQA program. The goal is to 

balance agility with discipline. 

ity Rigor Levels 

The NEAMS AFCI Quality Assurance Program Document (QAPD) has chosen a graded approach 

for quality.  There are three quality rigor levels. Quality Rigor Level 3 is for routine R&D, 

feasibility studies, conceptual designs, exploratory tradeoffs and conceptual modeling. Quality 

Level Rigor 2 is for technical analysis used to inform policy reporting to congress or 

stakeholders, analysis for national environmental policy, and critical or controversial decisions. 

lity safety, NRC licensing related, safety basis for cat 1, 2, or 3 

facilities, or benchmarking of a methodology that has potential for NRC approval. 

Quality Rigor Level 3 for software requires adherence to DOE Order 414.1-C and section 1.6 and 

of the QAPD. Quality Rigor Level 2 for software requires adherence to DOE Order 

C and section 1.6 and appendix C of the QAPD. Quality Rigor Level 1 requires adherence 

C and section 1.6 of the QAPD and NQA – 1 2000 Requirement 3 an

Table 3.  AFCI QAPD Graded Approach 

SQA Concepts for NEAMS 

In order to meet the requirements of the AFCI QAPD and to also incorporate lesions learned 

and best practices for ASC scientific research codes, the remainder of this paper will 

recommend nine key concepts for incorporation in to the MEAMS SQA program. The goal is to 

The NEAMS AFCI Quality Assurance Program Document (QAPD) has chosen a graded approach 

for quality.  There are three quality rigor levels. Quality Rigor Level 3 is for routine R&D, 

ffs and conceptual modeling. Quality 

Level Rigor 2 is for technical analysis used to inform policy reporting to congress or 

stakeholders, analysis for national environmental policy, and critical or controversial decisions. 

ted, safety basis for cat 1, 2, or 3 

facilities, or benchmarking of a methodology that has potential for NRC approval.  

C and section 1.6 and 

of the QAPD. Quality Rigor Level 2 for software requires adherence to DOE Order 

C and section 1.6 and appendix C of the QAPD. Quality Rigor Level 1 requires adherence 

1 2000 Requirement 3 and 11, 

 

In order to meet the requirements of the AFCI QAPD and to also incorporate lesions learned 

of this paper will 

recommend nine key concepts for incorporation in to the MEAMS SQA program. The goal is to 



Key Concept 1: Simplified Compliance Flow Down

The proposed approach to the NEAMS research simulation software 

document called the NEAMS Software Quality Assurance Plan (SQAP). Its purpose would be to 

cross walk and translate for software developers which software development processes and to 

what level of rigor would need to be followed for QRL 

have to encumber each software developer with the contents of all three governing standards 

and the interpretation of overlapping areas shown with arrows (see figure 

 

Figure 6 NEAMS Governing Software Standards and High Level Cross Walk

The NEAMS SQAP would require a Risk Assessment done by the code team lea

software quality engineer. Aligning the software project with the NEAMS SQAP would assure 

compliance to all three governing standards (see figure 

by the NEAMS SQE staff. The alignment would be accomplished by a Risk Assessment. The Risk 

Assessment would consist of answering questions in a Risk table based on the categories given 

in the NEAMS QAPD.   

Simplified Compliance Flow Down.  

The proposed approach to the NEAMS research simulation software would create a new 

document called the NEAMS Software Quality Assurance Plan (SQAP). Its purpose would be to 

cross walk and translate for software developers which software development processes and to 

what level of rigor would need to be followed for QRL 1,2, and 3. The reason for this is to not 

have to encumber each software developer with the contents of all three governing standards 

and the interpretation of overlapping areas shown with arrows (see figure 8). 
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The NEAMS SQAP would require a Risk Assessment done by the code team lead and certified 

software quality engineer. Aligning the software project with the NEAMS SQAP would assure 

). The NEAMS SQAP would be created 

by the NEAMS SQE staff. The alignment would be accomplished by a Risk Assessment. The Risk 

Assessment would consist of answering questions in a Risk table based on the categories given 



Figure 7 Simplified governing standards for software developers in the NEAMS SQAP

Key Concept 2: Risk Assessment Tool

Key to the success of the proposed NEAMS SQAP will be the ability to uniformly determine th

quality rigor level needed for any given code team. As an example of how to implement a risk 

graded approach, a description of the LLNL institutional process used on the ASC program is 

provided.  The LLNL Risk Assessment process is aligned to DOD Order 

which does refer to NQA 1- 2000, it is similar to the NEAMS compliance requirements.

The LLNL Risk Assessment process starts by recognizing the risk consequence and likelihood of 

failure.  The risk consequence addresses the impact t

Performance, Security and Political & Public Perception if the product fails to perform as 

expected. Table 2a provides a general description for each risk consequence category and Table 

2b is an example automated tool.

Risk Consequence Category 

Environment, Safety & Health 

Performance 

Simplified governing standards for software developers in the NEAMS SQAP

Key Concept 2: Risk Assessment Tool.  

Key to the success of the proposed NEAMS SQAP will be the ability to uniformly determine th

needed for any given code team. As an example of how to implement a risk 

graded approach, a description of the LLNL institutional process used on the ASC program is 

provided.  The LLNL Risk Assessment process is aligned to DOD Order 414.1-C and QC

2000, it is similar to the NEAMS compliance requirements.

The LLNL Risk Assessment process starts by recognizing the risk consequence and likelihood of 

failure.  The risk consequence addresses the impact to the Environment, Safety & Health, 

Performance, Security and Political & Public Perception if the product fails to perform as 

expected. Table 2a provides a general description for each risk consequence category and Table 

2b is an example automated tool. 

Description 

Risks to the operating and external environment, including: 

toxic release and cleanup.  Risks to life and limb.  Risks of 

regulatory liability. 

Risks to meeting program requirements/goals.  Risks of 

system downtime and work stoppage.  Risks to the 
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Table Table 2a. Risk Consequence Categories 

 

Table 2b.  Risk Consequence Tool 

acceptable performance of critical functions, including civil 

liability.  “Critical functions” are those important to the 

operation of the system or subsystem. 

Political & Public Perception Risks to governmental and public confidence and concerns. 

Security Risks to program, product and material security. 



 

Each of these categories has 5 tiers associated with them.  Tier 0 is dire consequences and Tier 

4 is minimal consequences, with Tiers 1-3 being distributed between them.  The SQE group, in 

consultation with the development team, determines the appropriate risk tier for each 

category. The highest level tier is used to determine the overall risk level of the product. The 

professional judgment needed to select the appropriate levels of risk consequence may require 

the SQE to work with other domain experts. 

The likelihood of failure calculation takes into consideration many contributing factors of the 

development environment.  Table 3a and 3b below shows some of the more important factors 

used in determining the likelihood of failure rating.  The likelihood table shown was constructed 

from and weighted according to the COQUALMO risk factors, which trace their pedigree to 40 

years of industry studies. Again, the SQE group, in consultation with the development team, 

determines the appropriate score for each factor.  The likelihood of failure calculation is 

optional. 
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1 2 4 8 16   

Product Volatility Monthly small 

changes; annual 

major changes 

 Small changes 

every 2 weeks; 

major changes 

every 3-4 months 

 Daily small 

changes; major 

changes every 2 

weeks 

1.00  

Software Complexity Simple    Very high 2.25  

Degree of Innovation Routine  Proven  Cutting edge 1.50  

Software Size Small  Medium  Large 2.25  

Technical Constraints Minimal 

constraints 

   Highly 

constrained 

1.25  

Process Maturity Managed, 

optimized 

Well 

defined 

processes 

Repeatable 

processes 

Record of 

repeated success

Little or no 

history 

2.25  

Schedule & Resource 

Constraints 

No deadline and 
minimally 
constrained 
resources 

 Deadline and/or 

resources are 

negotiable 

 Non-negotiable 

deadline with 

fixed resources 

1.00  



 

Table 3a. Likelihood of Failure Table 

Risk Resolution Risks managed 

and resolved 

   Uncontrolled 

risks 

1.25  

Team/Org Technical 

Knowledge 

Solid domain, 

technical, and 

tool knowledge 

 Good skills, but 

new knowledge 

areas 

 New to field 1.25  

Personnel Capability Top technical 

ranking tier 

   Low technical 

ranking tier 

1.25  

Team Dynamics Well established 

productive team 

   New team 1.00  

Team/Org Complexity Small collocated 

team 

 Medium team 

with critical 

members 

collocated and 

external 

organization 

involvement 

 Large team, not 

collocated, with 

multiple 

geographically 

dispersed 

organizations 

1.25  

Organization Reputation Long-term 

reputable in 

the field 

   New to the 

field/ start-up 

1.00  

Weighted Factor Score 

Subtotal 

 18.5  

Weighted Average Weighted Factor Score Total/Weighting Factor Total (18.5)  



 

Table 3b.  Likelihood of Failure Tool 

 

The consequence of failure and likelihood of failure (optional) factors are then weighted and 

combined with the risk consequence tier to determine the overall risk level as shown in Table 

4a and 4b. For instance a consequence of failure tier of 2 and a likelihood of failure score of 6 

would result in an Risk Level (RL) 3 code. 



 

 

 

 

 

 

 

 

 

 

 

 

Table 4a. Risk Level Assessment Grading Table 

 

 

Table 4b. Risk Level Assessment Grading Tool 

This risk analysis results in a better understanding of the overall project risks and level of rigor 

needed to mitigate those risks.  Using the risk assessment tool results in a uniform approach to 

risk assessment and creates an artifact of the risk assessment process. Risk assessment should 

Consequence of  

Failure Tiers 

 

      

Tier 0 RL1   RL1   RL1  

Tier 1 RL3   RL2   RL2  

Tier 2 RL4   RL3   RL3  

Tier 3 RL5   RL4   RL3  

Tier 4 RL5
 

  RL5   RL4  

  2  8   

Likelihood of Software Failure Rating 



be revisited periodically to assure that it is still valid. The risk assessment tool also has tables 

which delineate the software process activities: 

1. Software Project Management and Quality Planning 

2. Software Risk Management 

3. Software Configuration Management 

4. Procurement and Supplier Management 

5. Software Requirements Identification and Management 

6. Software Design and Implementation 

7. Software Safety 

8. Verification and Validation 

9. Problem Reporting and Corrective Action 

10. Training of Personnel in the Design, Development, Use, and Evaluation of Safety 

Software 

 

The levels of rigor for the software activities span the spectrum from formally managed where 

software that can cause injury or death requires strict processes while a proof-of-principle code 

may only require understood practices. Table 4c is an example of the Risk Grading tool’s 

recommended practices for the first four activities. 

 



 

Table 4c. Recommended Practices 

It should be recognized that doing an initial risk analysis to determine the level of rigor for a 

software project does not take the place of hazard analysis for safety related codes. The risk 

analysis would instead establish that a software project needs to do hazard analysis because 



the initial risk assessment has determined that the Consequence of Failure (Severity) and other 

development risk factors warrant it. Notice also that the process rigor left hand columns (Table 

4c) indicate the amount of control an enterprise has over the software project. This can vary 

from none to major control depending on whether the project is being done in house or by a 

supplier. Obviously the amount of control over the project is related to the ability to control 

activities. For each software development activity, the amount of rigor can vary from managed 

(M) to documented (D) to understood (U). The activities also can be formal (F) or tailored (T). 

For instance on a RL 1 project, activity 4 “procurement and supplier management”, sub activity 

“qualify software for intended usage” would have to be a formally managed activity, on a RL 4 

project the same activity and sub activity could be tailored and understood. After discussions 

with software safety experts, future versions of this assessment tool will change terminology to 

not be confused with more formal risk analysis techniques. The terms “consequence of failure” 

will be changed to “severity”, “likelihood of failure” will be changed to “development 

environment risks” and “risk levels” changed to “quality levels”. Allowing the rigor of a software 

process to be appropriate for the level of risk facilitates the use of a graded approach to an 

enterprise’s software quality engineering process and avoids the challenges and lack of support 

that is encountered with the “one size fits all” approach. 

Key Concept 3: Flow Down to Feeders and Libraries.  

It is important to note in the proposed NEAMS SQA approach that feeder codes and libraries 

are also required to have their own code team SQAP. This was an important lesson learned on 

the ASC codes. NEAMS may also find over time that the major codes are quite dependent on 

many feeder codes and libraries. For instance the codes that do the meshing or the display of 

results, or libraries that contain the equations of state for the materials used. If there is a lack of 

quality in the data or feeder codes it will feed up to the main codes. In the best of cases these 

errors in the feeder codes or data may show up as conspicuous errors when the major codes 

are tested, but in the worst case they will simply skew the answers and not be easily 

detectable. To exacerbate matters the major codes may make changes to correct the errors 

coming from the feeder codes or data. This error masking phenomenon can create a situation 

where the simulation produces the correct answer, but for the wrong reason. The proposed 

NEAMS SQE approach will drive the software quality initiative down to the lowest levels to 

decrease the uncertainly level in the final result. This does not mean that all feeder and data 

codes must be at the same Quality Rigor Level as the main codes. Mitigation steps (such as 

specific acceptance testing) may be taken so that a QRL3 display code could be used with a 

QRL2 main code. Figure 10 shows a typical assortment of feeder and data codes. Note that 

codes that collect and condition data stored in libraries must be audited, also open source 

codes, university codes, and COTS and GOTS codes. 

 



 

Figure 8  Feeders and library codes

 

Key Concept 4: Actual versus Gap analysis.

In the proposed NEAMS SQE approach, each software project team would also have a SQAP 

written by an SQE that compares the required level of rigor to be in compliance with the actual 

level of rigor that the team is using. The actual rigor is determined by t

audlet (small informal audit) of the actual practices being used by the code team. For each 

required software development activity, a table is created showing the level of rigor necessary 

to be in compliance and the level of rigor the 

purpose of this table is to identify gaps between what is required to be in NEAMS compliance 

and what is actually being done.  Table 5 is an example of a compliance table from a SQAP. In 

this table Codes A, P, and O are all in compliance with the Software Engineering Management 

Review criteria of documented management reviews. 
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meet the required level of rigor. The assigned embedded SQE can offer suggestions on how to 

do this. Experience has shown that often times code teams are doing the required process, but 

may use different terminology for the process or not think about the practice in the same way. 

The SQE would assure these vocabulary issues are cleared up. The other benefit of this concept 

is that it focuses process improvement activities on the areas where they are most needed. 

Key Concept 6: Automation and Tools.  

A description of some of the tools found useful in the ASC research code effort is listed below: 

• Dynamic analyzers – (Coverage) Examples: LCOV, GCOV, Purify, Intel. These tools can be 

enabled during regression testing to measure how much of the code is being covered by 

the regression tests. The coverage report shows statements and functions that are 

missed by the regression tests and provides good insights into how to improve 

regression tests. The code coverage can be measured at the statement or function level. 

Many of the ASC code teams also inserted hooks into their code to be able to measure 

feature coverage. Experience on ASC indicates that statement coverage of 60% or above 

is a reasonable goal. The reason 100% is not practical is the time it would take to check 

every error path, and the fact that recently added code may not yet have a full set of 

regression tests. Function coverage should run about 70% or above. Feature testing 

should be much higher. For features that are commonly used, 100% regression test 

coverage is the most common goal. 

• Static Analyzers - (defect finding) Examples: Klocwork, Covarity, McCabe Battlemap. 

These tools statically analyze the code and look for over a thousand different weak 

coding practices. Some examples of weak coding practices would be not initializing 

variables before using, overflowing a string field or loop index, dereferencing a null 

pointer or stale pointer, not releasing memory (memory leak), etc. Many of the 

problems these tools find elude peer reviews and regression tests. Static analyzers 

check every line of code and every path and decision branch. Reports from the tools are 

used by developer or SQEs to repair the code. The false positive rates of these two static 

analyzers are under 15% making them much more useful than LINT tools. Klocwork also 

has an architectural tool that allows a graphical viewing of the interactions between 

modules and suggests ways to improving interfaces. McCabe Battlemap also has a 

similar feature, allowing a graphical representation of the calling hierarchy. Both tools 

have extensive code metrics, including object oriented metrics which can be useful in 

refactoring. 

• Trackers - (Defect and Requirement) Examples: SFEE, Bugzilla, Round Up, Clearquest. 

Tracking requirements and defects is accomplished using tracking tools. Requirements 

need to be assigned to developers for design/implementation and also assigned test 



cases for subsequent validation. Defects found by users or developers other than the 

author need to be opened in a defect tracker and tracked until they are closed. Closing a 

defect usually requires fixing it and regression testing the code. Aging reports are 

created by tracking tools and help the code team decide which defects are not getting 

fixed in a timely manner or which requirements are not being implemented. 

• Code repositories – Examples: Perforce, Subversion, CVS, Clearcase. Configuration 

management of code (and related artifacts) is critical in a team development 

environment. Repositories allow check out of code, creation of test branches, orderly 

merging of check-ins, and a history of each change to the code between versions. 

Perforce has a more powerful merging capability than CVS or subversion and is better 

for larger code teams. Subversion maybe sufficient for smaller code teams. Repositories 

should also be backed up on a regular basis automatically and stored at another location 

for disaster recovery. Each version of code released to users must also be in the 

repository so that when questions arise from users, developers can duplicate the same 

version to explore the concern. 

• Automated build and regression testing – Examples: ATS, Tapestry, Autoconf, Quick 

Test Pro, Home Brew. Testing tools allow testing to proceed in an automated fashion on 

a check in, nightly, and pre-release basis. Testing tools are usually specific to the 

platforms (operating systems and schedulers) that are going to support the testing 

environment. The automated testing tools must be able to find the executable (or 

source) code to be tested, locate the tests (or inputs to the code to be tested), locate 

the baselines (expected results of running the tests), run the tests and produce reports 

to inform developers if the test passed or failed. The tools usually have a number of 

options about how the tests are to be configured, how many processors are to be used, 

whether to run in batch or interactive mode, how to make the comparisons between 

baselines and test results, tolerances, curve fitting, numerical comparisons, or to make 

corrections to the baseline. The tools may also inform developers of fialed test using e-

mail reporting. Typically these are written in a scripting language such as Perl or Python. 

The make and build process should also be automated to reduce the possibility of error 

in configuring the code for a particular platform. Tools such as autoconf or gmake are 

useful for this function and may work in conjunction with the automated testing tool. 

There are also a number of COTS gui test tools (such as HP Quick Test Pro), which are 

useful for testing codes that use gui’s. Most of the research simulation codes on the ASC 

program do not use guis for input. There are also open source test tools such as FIT or 

Fitness that allow table driven testing from spreadsheets or tables using fixtures. The 

ASC program at LLNL is in the process of building a general purpose system testing tool 

called Nazar, which combines the best features of Tapestry and ATS. 



• Combination tools – Examples: Source Forge Enterprise Edition, Rational Rose. Tools 

exist that are a framework of multiple tools which can seamlessly interact to support 

process automation. Source Forge Enterprise Edition has been found to be very useful 

on the ASC program. This tool allows code team tasks to be tracked and interfaces to 

Microsoft Project, defects and requirements to be tracked, contains a code repository, a 

document repository, a wiki, a forum, and the ability to associate tasks, trackers and 

artifacts. SFEE also allows the embedding of workflow in the tool to enforce process. 

Tools such as Rational Rose implement entire development methodologies, such as the 

Rational Unified Process. They also allow Unified Modeling Language to be used to 

describe sue cases and translate them into code. The  LLNL ASC experience found the 

RUP process to be heavyweight for research simulation codes. 

• Tool-smithing – Examples: Python, PERL. A number of useful reports can be generated 

to aid developers using a scripting language such as Python and open source utilities 

such as Google FLOT for charting. Scripts have been created to show user activity by 

version, compiler warning levels by version over time, last changes to code before tests 

began failing, etc. suing scripting in conjunction with automated tools. 

It should be noted however that tools themselves are not a silver bullet. The quality culture and 

quality aware project management must also be in place.  Commercial tools have non-trivial 

licensing costs, and all tools, even open source tools require continual support and a learning 

curve. However tools such as those discussed in this section have made large improvements in 

quality and productivity by eliminating redundant and error prone manual processes. Many of 

the tasks associated with rolling out tools to developer groups can be facilitated by the SQEs. 

Key Concept 7: Embedded SQE and Independent Reporting Organization.  

The approach of having the SQEs work closely with the code teams to conduct audlits, author 

SQAPS, and help install productivity enhancing tools is called an embedded approach. An 

advantage of this approach is it establishes gaps at the outset, positions the SQE as a helper 

rather than an adversary, and creates an easy to audit flow down of NEAMS SQA requirements. 

The code team level SQAPs will also identify tools used to meet or enforce rigor levels and any 

artifacts generated as the result of engaging in their software process.  

The SQE organization can be a part of the Validation and Verification group. It is important that 

the SQE group have an independent reporting path to the NEAMS program manager. Staffing of 

the proposed NEAMS SQA program would require assignment some of SQE’s to specific code teams, in 

most cases shared between more than on code team, and other SQE’s to focus of tools, feeder codes, 

libraries, GOTS, COTS and OSI codes. Qualifications of the SQE’s would include prior developer 

experience and certification by an organization such as ASQ. 
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for the larger codes. On the ASC program at LLNL, large codes must also have a Configuration 

Management Plan (CMP), Software Test Plan (STP), and Disaster Recovery Plan (DRP). Smaller 

codes can include these plans in their SQAP. Advantages of the embedded approach are audits 

are done initially, the SQAP is understandable in the context of the individual code team’s 

environment, and gaps surface early and are closed early in the project. The SQE is viewed as a 

value added member of the code team, helping the team with suggestions and tools to close 

any gaps.  This approach has proven effective on the LLNL ASC program over the past five years 

for research simulation codes. 

Key Concept 8: On Going Best Practices Forums.  

Best practice forums are periodic meetings that bring developers together to discuss what is 

working and not working within their software projects. At LLNL best practice meetings are 

conducted as local meetings, but could also be implemented on NEAMS in an unclassified 

environment with collaboration software, such as “Go To Meeting” or Webex to bring together 

teams that are geographically dispersed. Management is not allowed in best practice meetings 

so that failures as well as success can comfortably be discussed. The best practice meetings 

have done much more than share best practices, the meetings opened up communication 

between groups that had remained isolated in prior years. New processes and tools are much 

more readily accepted by code teams if they are recommended by their peers rather than 

prescribed top down. The information for the meeting is captured and put on the Best Practice 

wiki so that it can be accessed later and by a larger audience. An additional wiki site was added 

to list industry best practices information as well for System, Military, Outsourced, MIS, and 

Commercial software categories. 

Best practices that have been found successful on the ASC research simulation codes include 

the following: 

� Best Practices Forums 

� Multi-level automated regression testing 

� Code repositories 

� Defect/Requirement trackers 

� Static code analysis 

� Code coverage measurement (feature, function, statement) 

� Embedded SQEs 

� Source Forge Enterprise Edition 

� Risk based graded approach 

� Process and Product SQE metrics 



Multi-level automated regression testing has been adopted by most all code teams as a best 

practice. The regression tests consist primarily of designed simulations with verified or 

validated answers known a priori. There are differing levels of regression tests. A smoke test is 

the smallest collection of regression tests, they run automatically whenever new code or 

modified code is checked in. They take 15 to 30 minutes to run. Nightly regression tests are run 

each evening and take 2-3 hours and contain a more comprehensive test set. Prior to a new 

release, a full set of regression tests are run, these take 2 or 3 days and include the full set of 

tests, both optimized and instrumented modes with numerous combinations of node/processor 

allocations.  The automation of the regression tests is accomplished by test tools that have 

been written by the ASC code teams. The ASC SQEs are currently in the process of combining 

these two test tools into a single test tool that has all the features that each code team 

requires. 

Each code team uses code repositories for configuration management of code, Perforce and 

Subversion being the most popular. Trackers are used for requirement and defect tracking, the 

most popular being Source Forge Enterprise Edition tracker, Bugzilla, and Round Up. Static 

analysis is done on the codes using the Klocwork tool. To date thousands of potential defects 

have been removed that were not detectable in code reviews, compilation, or testing. The 

quality of the testing is measured using dynamic analyzers to measure code coverage. Code 

coverage is accomplished at three levels, feature, function, and statement coverage. This best 

practice will indicate areas where tests are not exercising the code and defects could go 

undetected. Coverage tools used are GCOV, LCOV, Intel, and Purify. Source Forge Enterprise 

Edition is used for project task management, documentation archives, meeting notes, 

functional specifications, code branch tracking, project wikis, and forums. The embedded 

approach allows the SQEs to work shoulder to shoulder with developers to implement 

improved practices and tools. These are a few of the numerous best practices that have 

emerged from the best practices forums. 

Minutes from best practices meetings are made available through a searchable wiki based on 

meeting date or topic. Also, industry best practices have been added to the best practices wiki 

thanks to the permission of Capers Jones. These best practices are his findings studying 

commercial, MIS, military, outsourced, and system software projects. 

Key Concept 9: Use of Natural Metrics.  

The Embedded SQE gather natural metrics about the code teams and codes and this data is also 

tracked for trends on the SQA project web site. Natural metrics imply  that the developers are 

not asked to do extra work to determine and track these metrics, most of measurement and 

collection work is done by the SQEs. The list of natural metrics tracked on each code team is 

for: 



� Compliance documentation (Boolean) 

� Compliance (SQE internal, 1-10) 

� Code metrics (Name, Lead, Size, FP, #Users, Risk) 

� Coverage metrics (feature, function, statement) 

� Estimated Fault Density 

� Estimated CMM Level 

� Static analyzed (lines, errors, error rate, fixed) 

� Cyclomatic Complexity 

The natural metrics are posted to the SQE web site which is set up as a collaborative 

documentation repository using Source Forge Enterprise Edition. Code teams themselves may 

keep many additional metrics of interest, such as which versions of code are used most 

frequently, warning levels on compile, aging reports for defects, etc. 

Compliance metrics keep track of required compliance flow down documentation, requiring it 

be complete and current. Complete means contains required risk assessment, actual practice, 

plan to close any gaps, reviewed, signed, and in the ASC repository. Compliance ratings are the 

result of the audlet, which is an interview with the code team lead and/or members. Code 

teams are given a rating from 0 to 100% for each of the ten activities in DoD Order 414.1-C. The 

percent approximates the percentage of compliance in that activity. This metric is used to 

prioritize process improvements for code teams and activities within the code team. For 

instance if a code team scores 30% on design compliance, then an SQE may work with the team 

to install a tool to capture design trade off notes, functional specifications, or in the case of 

legacy code, flow chart the as built design (using a tool such as Visustin), run a calling hierarchy 

static analyzer (using a tool such as McCabe Battlemap), or look for circular relationships (using 

a tool like Klocwork architect tool). 

Code metrics list the code teams, the code team lead, the number of lines of code (excluding 

comments), number of function points (usually backfired), number of users of the code, and 

assigned risk level of the code from the risk assessment tool. Estimated fault density is 

calculated by the SQE using a spreadsheet tool derived from the COQUALMO method. This 

method uses the same risk factors used in COCOMOII to estimate the fault density of the code. 

Fault density is expressed as defects per thousand lines of code (ksloc). The ECMM metric is 

also used, this metric uses a spreadsheet tool that the SQE fills out to estimate the CMM level 

of the software group, 1 to 5. One is the least mature process, 5 is the most mature. The results 

of the COQUALMO and ECMM are correlated, as empirical fault density data exists for different 

CMM levels. The COQUALMO and ECMM metrics are used to prioritize process improvements 



for the code teams. The estimated fault density is also compared against the actual discovered 

fault density measured by the Klocwork static analyzer tool. 

Results of static analysis are also kept as metrics. This includes the number of lines of code 

analyzed, the number of potential errors found, the error rate (per ksloc), and the number of 

errors fixed. On the ASC program at LLNL about 6 million lines of code have been analyzed and 

the number of defects found and fixed is over 8,000. These defects had not been previously 

detected in code reviews, unit testing, and regression testing. Average cyclomatic complexity is 

also tracked and also used to prioritize process improvements.  The average cyclomatic 

complexity is the average number of paths through each module of code analyzed. Lower 

numbers would theoretically indicate easier to maintain code, 10 is a suggested maximum.  

On-Going Risk Management 

An on-going risk management process is conducted by the SQE team. This includes identifying 

risks, assessing the risk, analyzing and tracking the risk, and using the information to manage 

the SQE project. Risks that have been managed include understaffing, and underfunding. This is 

a consequence of other government programs receiving higher priorities. As the funding 

reductions continue the work load has not reduced, resulting in understaffing. Use of 

automation and estimation tools help to mitigate this risk. Another related risk is the 

retirement of domain experts and the lack of qualified US citizens in the sciences. Platform 

volatility is a constant risk, with the simulation codes needing to run on a number of different 

and specialized platform types. Research codes tend to sprawl out instead of being designed 

with specific architectures. Refactoring and tools that allow insights into the calling hierarchies 

and architecture of the codes are helpful here. Dead code is also a problem, created by a new 

experimental feature that has been abandoned; the old code however was left in. Static 

Analyzers find this code and help with its safe removal.   

Simulation codes assume that the users are very knowledgeable about the inputs they are 

providing to the codes. Therefore there is minimal input checking functionality in the codes 

adding risk that a user error could go undetected. To mitigate this risk tests have been derived 

from the user guide documents to exercise the input over ranges of legal and erroneous values. 

In research simulation development physicists and developers focus on the physics and 

complex algorithms and input checking does not receive as much emphasis. An error in the 

input that is not detected however could certainly skew simulation results, especially if is small 

enough to give a reasonable looking answer. In research codes small errors are much more 

serious than large conspicuous errors that core dump the simulation. 

The ASC program uses natural metrics to compare to other industries and to gage that the level 

of quality is appropriate. The quality of research simulation codes is not going to reach the level 

required for military mission critical software, nor should it. The timeliness of the answers and 



need to continually improve and add features to simulations would not be achievable with an 

overly rigid quality program. Benchmarking fault density to other industries indicated that the 

quality of the ASC research simulation codes does exceed that of most commercial software 

products and web businesses. 

SQA Plan Summary 

 In conclusion, the proposed NEAMS Software Quality Assurance program is based on the 

unique requirements for research simulation codes. Based on experiences of what worked and 

what did not, the following nine key concepts are proposed for NEAMS SQA: 

1. Simplified Compliance Flow Down 

2. Risk Assessment Tools 

3. Flow Down to Feeders and Libraries 

4. Required/Actual Gap Analysis 

5. Process Improvements to Close Gaps 

6. Automation and Tools Support 

7. Embedded SQE’s and Independent Reporting Organization 

8. Shared Best  Practices Approach 

9. Natural Metrics to Prioritize Improvements 

The application of these proven research simulation key concepts has helped institutionalize a 

quality culture at the grass roots level on the ASC program at LLNL. The proposed approach 

addresses the challenge of balancing agility and discipline while encouraging the continuous 

improvement of SQA practice. 

Current SQA practices and needs of the IPSC teams 

In this section we highlight the discussions held with each of the IPSC teams on the current 

practices they are using or plan to use to ensure a high quality software product.  These 

discussions were informal; in FY10 we plan to map the current practices to the nine key 

concepts listed above and help each of the teams create a more robust SQAP. 

Reactor Core Modeling 

The software provided by this team is divided into components and managed in an svn 

repository.  Regression testing software is currently being evaluated with the leading candidate 

solution being ‘FLASH Test’; a open source custom tool developed at the University of Chicago 

for building a suite of tests; examining individual models across many different platforms and 

providing an integrated view of the results.  The team has not yet selected their documentation 

tools.  Doxygen is a leading candidate for software documentation, but the lack of support for 

f90 is problematic. 



 

 The team is interested in tools that can express the formalities of the coupling (interfaces, data 

flow, etc) and would like to consider the Rational software design tools from IBM.  They are also 

interested in considering other regression testing software packages and documentation 

systems.  

Fuels Modeling 

The Fuels team has several SQA tools in place including software documentation tools, 

repository tools, and unit testing practices and is interested in working with ECT to evaluate 

their current practices and identify new tools that would improve productivity.  

Waste Forms Modeling 

High-level requirements and plans for the software engineering environment for the Waste 

Forms IPSC are based upon Sandia National Laboratory’s rigorous experience implementing SQE 

within numerous software development projects, especially those within the Advanced 

Simulation and Computing (ASC) program. It is expected that eventually some Waste Forms 

codes will be required to satisfy Quality Rigor Level 1 Requirements defined in the AFCI 

requirements; practices and tools are planned to enable development at this rigor level. For 

other codes in the suite, however, development at lower levels of rigor will also be supported.  

The software practices in the Waste Forms IPSC will emphasize efficient development of quality 

software, which must be reliable, usable, efficient, and portable, as well as maintainable and 

flexible when incorporating new components.  Further, the IPSC will adopt practices requiring 

the use of appropriate processes and practices to develop and maintain the code at a high level 

of software quality from the instant that it is created- that is, the software will be “born 

assessed.  

Safeguards and Separations 

No specific discussions were held with the SafeSep team regarding software quality assurance 

in FY09.  We will pursue specific discussions on this issue in FY10. 

  



Pillar 3: Computing Platforms and Cycles 

Part of the charter of ECT is to ensure that the IPSC teams have access to adequate computing 

hardware to carry out their portions of the NEAMS mission.  To begin fulfilling this portion of 

the ECT operation the team devoted effort to learning what the hardware needs of the IPSC 

teams are and determining what resources can be made available to them in later years of the 

program.   

Preliminary Compute Needs of the IPSC Teams 

In this section we highlight the preliminary discussions that we have ad with the IPSC team 

regarding their needs for compute cycles, memory and storage.  The discussions, because they 

are informal, have had different levels of detail.  This will be unified to a consistent level of 

understanding in FY10 using the questionnaire mentioned in the previous section. 

Reactor Core Modeling 

FLOPS:  The team currently relies on INCITE awards on the Office of Science Leadership Class 

Computing Facilities at ANL and ORNL for the resources needed for their largest scale runs.  

They foresee a near-term need for intermediate resources to support a large number of runs 

with 100-500 processors and would like to see a dedicated capacity resource dedicated to 

NEAMS (e.g. 5000 processor cluster).  

 

Memory:  The neutronics calculations have very large memory requirements (e.g. 2.4 

terabytes/group or 24 petabytes per 10000 groups) needed for subsections of the reactor.  

Architectures targeting NEAMS applications will need to address this requirement. 

 

Storage and post processing:  A typical 217 pin run of the thermal hydraulics calculation will 

generate a petabyte of data which implies the file system will need to operate at 100 Gbytes/s 

to move data between machines.  It is anticipated that post-processing will be done as the run 

proceeds (on BG system) to get statistics.   A parallel data analysis machine (approximately 10% 

of the computing system) is required to visualize analyze the post-processing data. 

Fuels Modeling 

No specific discussions on hardware needs were held with the fuels team in FY09. We will 

pursue specific discussions on this issue in FY10.  

Waste Forms Modeling 

The IPSC envisions little immediate need for outside resources, as they are in early 

development stages of the framework and identifying component technologies.  However, they 

envision having a “major need” for computing cycles beginning in late FY10 or early FY11.  They 



will need capability computing for the high-fidelity models and capacity computing for 

surrogate assessment codes, which will have many environment scenarios to test. 

Safeguards and Separations 

The wide range of programs created and employed in the Safeguards and Separations IPSC 

indicate that a wide variety of hardware needs are also to be encountered here. Many of the 

component codes are small, employing only a few processors (or just one processor). These 

codes are likely to be run on desktop machines; the main hardware need in these cases is for 

fast interconnects allowing the data being produced to be moved from place-to-place rapidly 

and efficiently.  

 

At the other extreme, some of the physical separation simulations involve highly sophisticated 

multiphysics packages, such as molecular dynamics, interfacial flows, or densitometer 

simulations. These codes require large-scale discretizations, run for considerable lengths of 

time even on highly parallel machines, and produce large quantities of data.  These simulations 

will require access to large multicore, parallel machines.   

 

While most of the design codes are designed as “what if” codes, allowing the designer to 

modify and monitor the effects of changes to the design parameters, and do not typically 

require truly high-performance computing.  One exception to this, however, is, for example, 

HostDesigner, a design code that can examine cascaded designs and employ multiple linked 

runs.  For example, HostDesigner was employed and examined 72 million designs in 7 minutes 

on an Apple desktop.   For the most part, the IPSC codes require capacity, rather than capability 

processing. 

 

In at least one novel application, team members are creating an interactive system for 

modeling separation plant safeguard scenarios using a package with the “look & feel” of a video 

game, with an investigator moving through the plant encountering various states of the 

safeguard system.  This simulation is performed employing fast graphics processing units (GPU). 

 

In summary, while the Safeguards and Separations IPSC is at the beginning of their planning, it 

is already possible to foresee a host of ECT needs, in language interoperability, user interfaces, 

visualization, and computing hardware.  It is entirely likely that as the IPSC gears up more fully 

other needs will be identified, making it crucial that the ECT team continue working closely with 

the Safeguards and Separations management.  

Surveys of the IPSC team compute needs 

In FY09 we conducted an informal survey of the IPSC teams to determine how much computer 

time and storage are needed to conduct their mission; these results are reported in earlier 



sections. Essentially, they indicate that a wide variety of platform needs is envisioned, ranging 

from stand-alone desktops to time on supercomputers.    

As the teams begin to develop their products, it will become increasingly important to gather 

accurate descriptions of the computing cycle & storage requirements from all IPSCs.  The goal in 

this area is to identify: 

• the type of computing resources required by the program; 

• the size (i.e., capacity and capability) of the required computing resources; and 

• where to find and/or site the required computing resources. 

To accurately amass these computing requirements, in FY09 we began to devise a 

questionnaire that will provide the answers to a common set of questions regarding their codes 

and resources: 

 

What are the characteristics of the codes and simulations? 

• Continuum, discrete, other? 

• Are they compute-bound or communication-bound? 

• How many CPUs does a typical simulation require? 

• What is the average size of the output data generated by a typical simulation? 

• What are the visualization needs? 

• Described the type of activity the simulations support (code development (testing, 

debugging), code verification and UQ, large-scale parallel computing, production runs 

• How many runs or ensemble of runs will be done per year? 

 

What resources are currently available? 

• Are they currently sufficient? 

• What are the expected future needs? 

• Can the team’s computational needs be satisfied by a computing facility at a remote 

site?  

 

In answering these questions, the ECT team will ask each program element to classify the needs 

as short term (1-3 years), medium term (4-6 years), and long term (7-10 years).  

Developing a NEAMS computer facility 

Ensuring that supercomputer time is available to the code teams requires identifying available 

machines at the participating laboratories, determining access requirements, and discovering 

the mechanisms by which the code teams fan fulfill the access requirements.  For the most 

part, this aspect, “local supercomputing” is better handled by the code teams themselves, as 

they are generally already familiar with the requirements at their home laboratories. 



A second approach, the “user facility” approach, is to create at one of the laboratories a virtual 

“NEAMS User Facility” in which time on one or more supercomputers is reserved by NEAMS 

specifically for use by the NEAMS community.   

The Computing Facility at Idaho National Laboratory, operated by the Center for Advanced 

Modeling and Simulation (CAMS) is intended to fulfill just such a role. The center is equipped 

with a 2048 processor SGI Altix shared-memory Linux cluster with an Infiniband interconnect, 

running at a peak of 20 teraflops. With its shared memory and Intel processors, the system has 

been used successfully fuels related problems, demonstrating the utility of the system for 

NEAMS work. The Center also has a PowerWall display system, enabling virtual exploration of 

datasets and performance of important analyses. They are purchasing an immersive 

visualization system, as well. The Center is in the process of purchasing a sizeable persistent 

mass storage system, significantly increasing the size of simulations that could be run.  

The primary use of the INL computing center to date has essentially been internal INL use only. 

One of the primary bottlenecks in using this facility as an external user facility is the low 

bandwidth on connections to external networks, which significantly limits the effectiveness of 

remote use.  A relatively small investment of $300K would provide the resources necessary to 

allow for a connection to the ESnet backbone; alleviating this restriction.  Furthermore, the 

Center must further develop its systems for managing user accounts and system resources for 

offsite users.  

  



FY10 Planned Activity 

 The ECT team has a comprehensive set of activities planned, beginning in FY10, to address the 

needs identified in the previous sections.  While the scope of FY10 activities is naturally 

dependent on the size of the ECT budget, the intent is to work primarily in four basic areas: 

requirements gathering, software quality assurance, constructing the ECT clearing house, and 

assisting the creation of a user facility at the Idaho computing center.  More specifically, the 

activities planned are: 

� Requirements Gathering. ECT will continue to gather the requirements and priorities of the 

IPSCs and VU, FMM, and CT elements of NEAMS.  

• Because they are less fully developed than the Fuels and Reactors IPSCs, most of the 

requirements gathering focus will be on the Waste Forms and Safeguards & 

Separations IPSCs.  

• ECT will maintain contact and work to understand how we can support the VU, 

FMM, and CT efforts. 

� Software quality assurance.  The SQA activities of the ECT team will be focused on 

providing an overarching SQA philosophy, selling that philosophy to the program elements, 

and providing tools and techniques by which the philosophy can be incorporated into the 

code efforts. The specific FY10 activities envisioned include:  

• Collecting and deploying tools for a graduated risk-based assurance approach. 

• Working closely with IPSC teams to evaluate and, as needed, improve or replace 

current approaches (e.g., implement a  test system for reactor team). 

• Collaborate with CT on consistent SQA deployment across NEAMS technologies.  

�  ECT Clearing House. The team intends to build a “clearing house” of ECT information and 

tools, making them available easily to the NEAMS program elements.  The most likely 

mechanism for accomplishing this is to mount a Web Portal, through which NEAMS 

researchers, developers, and practitioners can easily download the tools themselves along 

with easily implemented scripts for installation, high-quality documentation of the tools, 

and information about best practices and philosophies.  In order to leverage the vast body 

of work that has been previously amassed, ECT  will focus on the SQA tools developed by 

and available through the SciDAC and ASC programs. 

�  Idaho computing center.  ECT considers the establishment of one or more dedicated user 

facilities to be of critical importance to the success of NEAMS; it is essential that the 

program have a known, reliable source of computing cycles and not be dependent on the 

generosity of local computer centers or on the competitive awarding of computer time.  To 

that end, ECT will focus on aiding in the development of the Idaho National Laboratory as a 

NEAMS user facility.  This will include providing support for staffing to handle user accounts 

and data management, to develop high-speed connections to the internet, and to insure 



that other infrastructure necessary for effective use by remote users be emplaced.  ECT will 

also encourage and facilitate the remote use by a few friendly, external NEAMS users, in 

order to a) prove the concept of INL as a user facility, and b) identify obstacles that must be 

overcome for effective use.  

Conclusion  

Following on the successes of ASCI, ASC, and SciDAC over the past two decades, it has become 

clear that computational simulation really has taken a place as a peer to theory and experiment 

in a new paradigm of science.  Simulation has been accepted as a fundamental tool that can be 

used to predict and interpret the results of experiment as well as to guide the design of 

experiments.  NEAMS is intended to deliver to its ultimate customers a comprehensive, 

integrated capability for performing large-scale multiphysics simulation to be used as a crucial 

tool in the design, engineering, licensing, and operation of the next-generation nuclear power 

system.  To accomplish this ambitious goal, NEAMS was founded around four code teams 

whose charter is to provide advanced simulation capabilities in reactors, fuels, waste forms, 

and separations & safeguards.  But learning from the ASCI experience, NEAMS management 

recognized that all the code teams are faced with some common software and hardware needs.  

Enabling Computational Technologies is a NEAMS activity whose task it is to determine the 

commonalities of need among the code teams and ensure that the necessary software  and 

hardware resources are acquired or built, and are made available to the NEAMS scientists in 

timely manner. 

In FY09, the ECT team made a concerted effort to understand the NEAMS program and the 

particular needs of the Integrated Performance and Safety codes in the areas of tools and 

libraries, software quality assurance, and computer facilities and resources.  While this effort is 

not complete, several emerging themes became clear:  model set up and mesh-to-mesh 

coupling tools, visualization technologies, help with software quality assurance tools and user 

interfaces are high priority items for the ECT program element.  We also analyzed the needs of 

the AFCI program in software quality assurance and provided a recommendation for a risk-

based graded approach.  Our approach contains nine key concepts that balance the need for a 

disciplined yet flexible approach to software development in the NEAMS research environment.  

Finally, we initiated discussions with the IPSC teams to understand their current and envisioned 

compute resource needs (FLOPS and storage).  We also engaged the Idaho National Laboratory 

computer center to understand what facilities they can provide to the broader NEAMS 

community and what is needed to ensure successful deployment as an external user facility.  In 

FY10, several activities are planned to continue this work including further information and 

requirements gathering, building a web portal clearinghouse for ECT information, initiating the 



deployment of SQA tools to the IPSC teams, and strengthening Idaho’s ability to support 

external users.  Funding permitting, the ECT program element will also engage in the 

development of customization of key tools and libraries such as mesh-to-mesh coupling tools 

and expansion of VisIt visualization capabilities. 


